@phdthesis{Bemm2018, author = {Bemm, Felix Mathias}, title = {Genetic foundation of unrivaled survival strategies - Of water bears and carnivorous plants -}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157109}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {All living organisms leverage mechanisms and response systems to optimize reproduction, defense, survival, and competitiveness within their natural habitat. Evolutionary theories such as the universal adaptive strategy theory (UAST) developed by John Philip Grime (1979) attempt to describe how these systems are limited by the trade-off between growth, maintenance and regeneration; known as the universal three-way trade-off. Grime introduced three adaptive strategies that enable organisms to coop with either high or low intensities of stress (e.g., nutrient deficiency) and environmental disturbance (e.g., seasons). The competitor is able to outcompete other organisms by efficiently tapping available resources in environments of low intensity stress and disturbance (e.g., rapid growers). A ruderal specism is able to rapidly complete the life cycle especially during high intensity disturbance and low intensity stress (e.g., annual colonizers). The stress tolerator is able to respond to high intensity stress with physiological variability but is limited to low intensity disturbance environments. Carnivorous plants like D. muscipula and tardigrades like M. tardigradum are two extreme examples for such stress tolerators. D. muscipula traps insects in its native habitat (green swamps in North and South Carolina) with specialized leaves and thereby is able to tolerate nutrient deficient soils. M. tardigradum on the other side, is able to escape desiccation of its terrestrial habitat like mosses and lichens which are usually covered by a water film but regularly fall completely dry. The stress tolerance of the two species is the central study object of this thesis. In both cases, high througput sequencing data and methods were used to test for transcriptomic (D. muscipula) or genomic adaptations (M. tardigradum) which underly the stress tolerance. A new hardware resource including computing cluster and high availability storage system was implemented in the first months of the thesis work to effectively analyze the vast amounts of data generated for both projects. Side-by-side, the data management resource TBro [14] was established together with students to intuitively approach complex biological questions and enhance collaboration between researchers of several different disciplines. Thereafter, the unique trapping abilities of D. muscipula were studied using a whole transcriptome approach. Prey-dependent changes of the transcriptional landscape as well as individual tissue-specific aspects of the whole plant were studied. The analysis revealed that non-stimulated traps of D. muscipula exhibit the expected hallmarks of any typical leaf but operates evolutionary conserved stress-related pathways including defense-associated responses when digesting prey. An integrative approach, combining proteome and transcriptome data further enabled the detailed description of the digestive cocktail and the potential nutrient uptake machinery of the plant. The published work [25] as well as a accompanying video material (https://www.eurekalert.org/pub_releases/ 2016-05/cshl-fgr042816.php; Video credit: S{\"o}nke Scherzer) gained global press coverage and successfully underlined the advantages of D. muscipula as experimental system to understand the carnivorous syndrome. The analysis of the peculiar stress tolerance of M. tardigradum during cryptobiosis was carried out using a genomic approach. First, the genome size of M. tardigradum was estimated, the genome sequenced, assembled and annotated. The first draft of M. tardigradum and the workflow used to established its genome draft helped scrutinizing the first ever released tardigrade genome (Hypsibius dujardini) and demonstrated how (bacterial) contamination can influence whole genome analysis efforts [27]. Finally, the M. tardigradum genome was compared to two other tardigrades and all species present in the current release of the Ensembl Metazoa database. The analysis revealed that tardigrade genomes are not that different from those of other Ecdysozoa. The availability of the three genomes allowed the delineation of their phylogenetic position within the Ecdysozoa and placed them as sister taxa to the nematodes. Thereby, the comparative analysis helped to identify evolutionary trends within this metazoan lineage. Surprisingly, the analysis did not reveal general mechanisms (shared by all available tardigrade genomes) behind the arguably most peculiar feature of tardigrades; their enormous stress tolerance. The lack of molecular evidence for individual tardigrade species (e.g., gene expression data for M. tardigradum) and the non-existence of a universal experimental framework which enables hypothesis testing withing the whole phylum Tardigrada, made it nearly impossible to link footprints of genomic adaptations to the unusual physiological capabilities. Nevertheless, the (comparative) genomic framework established during this project will help to understand how evolution tinkered, rewired and modified existing molecular systems to shape the remarkable phenotypic features of tardigrades.}, subject = {B{\"a}rtierchen}, language = {en} } @phdthesis{Schwarz2008, author = {Schwarz, Roland}, title = {Modellierung von Metabolismus, Transkriptom und Zellentwicklung bei Arabidopsis, Listerien und anderen Organismen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27622}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Im gleichen Maße wie informatisches Wissen mehr und mehr in den wissenschaftlichen Alltag aller Lebenswissenschaften Einzug gehalten hat, hat sich der Schwerpunkt bioinformatischer Forschung in st{\"a}rker mathematisch und informatisch-orientierte Themengebiete verschoben. Bioinformatik heute ist mehr als die computergest{\"u}tzte Verarbeitung großer Mengen an biologischen Daten, sondern hat einen entscheidenden Fokus auf der Modellierung komplexer biologischer Systeme. Zur Anwendung kommen hierbei insbesondere Theorien aus dem Bereich der Stochastik und Statistik, des maschinellen Lernens und der theoretischen Informatik. In der vorliegenden Dissertation beschreibe ich in Fallstudien die systematische Modellierung biologischer Systeme aus einem informatisch - mathematischen Standpunkt unter Anwendung von Verfahren aus den genannten Teilbereichen und auf unterschiedlichen Ebenen biologischer Abstraktion. Ausgehend von der Sequenzinformation {\"u}ber Transkriptom, Metabolom und deren regulatorischer Interaktion hin zur Modellierung von Populationseffekten werden hierbei aktuelle biologische Fragestellungen mit mathematisch - informatischen Modellen und einer Vielzahl experimenteller Daten kombiniert. Ein besonderer Augenmerk liegt dabei auf dem Vorgang der Modellierung und des Modellbegriffs als solchem im Rahmen moderner bioinformatischer Forschung. Im Detail umfassen die Projekte (mehrere Publikationen) die Entwicklung eines neuen Ansatzes zur Einbettung und Visualisierung von Multiplen Sequenz- und Sequenz-Strukturalignments, illustriert am Beispiel eines Hemagglutininalignments unterschiedlicher H5N1 Varianten, sowie die Modellierung des Transkriptoms von A. thaliana, bei welchem mit Hilfe einer kernelisierten nicht-parametrischen Metaanalyse neue, an der Infektionsabwehr beteiligten, Gene ausfindig gemacht werden konnten. Desweiteren ist uns mit Hilfe unserer Software YANAsquare eine detaillierte Untersuchung des Metabolismus von L. monocytogenes unter Aktivierung des Transkriptionsfaktors prfA gelungen, dessen Vorhersagen durch experimentelle 13C Isotopologstudien belegt werden konnten. In einem Anschlußprojekt war der Zusammenhang zwischen Regulation des Metabolismus durch Regulation der Genexpression und der Fluxverteilung des metabolischen Steady- State-Netzwerks das Ziel. Die Modellierung eines komplexen organismischen Ph{\"a}notyps, der Zellgr{\"o}ßenentwicklung der Diatomee Pseudo-nitzschia delicatissima, schließt die Untersuchungen ab.}, subject = {Bioinformatik}, language = {de} }