@article{SchartlShenMaurusetal.2015, author = {Schartl, Manfred and Shen, Yingjia and Maurus, Katja and Walter, Ron and Tomlinson, Chad and Wilson, Richard K. and Postlethwait, John and Warren, Wesley C.}, title = {Whole body melanoma transcriptome response in medaka}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0143057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144714}, pages = {e0143057}, year = {2015}, abstract = {The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.}, language = {en} } @article{SchliewenFrickeSchartletal.1993, author = {Schliewen, U. and Fricke, H. and Schartl, Manfred and Epplen, J{\"o}rg T. and Paabo, S.}, title = {Which home for coelacanth?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61606}, year = {1993}, abstract = {No abstract available}, subject = {Physiologische Chemie}, language = {en} } @article{HaggeMuellerBirkemoeetal.2021, author = {Hagge, Jonas and M{\"u}ller, J{\"o}rg and Birkemoe, Tone and Buse, J{\"o}rn and Christensen, Rune Haubo Bojesen and Gossner, Martin M. and Gruppe, Axel and Heibl, Christoph and Jarzabek-M{\"u}ller, Andrea and Seibold, Sebastian and Siitonen, Juha and Soutinho, Jo{\~a}o Gon{\c{c}}alo and Sverdrup-Thygeson, Anne and Thorn, Simon and Drag, Lukas}, title = {What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database}, series = {Journal of Animal Ecology}, volume = {90}, journal = {Journal of Animal Ecology}, number = {8}, doi = {10.1111/1365-2656.13512}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244717}, pages = {1934 -- 1947}, year = {2021}, abstract = {The extinction of species is a non-random process, and understanding why some species are more likely to go extinct than others is critical for conservation efforts. Functional trait-based approaches offer a promising tool to achieve this goal. In forests, deadwood-dependent (saproxylic) beetles comprise a major part of threatened species, but analyses of their extinction risk have been hindered by the availability of suitable morphological traits. To better understand the mechanisms underlying extinction in insects, we investigated the relationships between morphological features and the extinction risk of saproxylic beetles. Specifically, we hypothesised that species darker in colour, with a larger and rounder body, a lower mobility, lower sensory perception and more robust mandibles are at higher risk. We first developed a protocol for morphological trait measurements and present a database of 37 traits for 1,157 European saproxylic beetle species. Based on 13 selected, independent traits characterising aspects of colour, body shape, locomotion, sensory perception and foraging, we used a proportional-odds multiple linear mixed-effects model to model the German Red List categories of 744 species as an ordinal index of extinction risk. Six out of 13 traits correlated significantly with extinction risk. Larger species as well as species with a broad and round body had a higher extinction risk than small, slim and flattened species. Species with short wings had a higher extinction risk than those with long wings. On the contrary, extinction risk increased with decreasing wing load and with higher mandibular aspect ratio (shorter and more robust mandibles). Our study provides new insights into how morphological traits, beyond the widely used body size, determine the extinction risk of saproxylic beetles. Moreover, our approach shows that the morphological characteristics of beetles can be comprehensively represented by a selection of 13 traits. We recommend them as a starting point for functional analyses in the rapidly growing field of ecological and conservation studies of deadwood.}, language = {en} } @article{NguyenBeetzMerlinetal.2022, author = {Nguyen, Tu Anh Thi and Beetz, M. Jerome and Merlin, Christine and Pfeiffer, Keram and el Jundi, Basil}, title = {Weighting of celestial and terrestrial cues in the monarch butterfly central complex}, series = {Frontiers in Neural Circuits}, volume = {16}, journal = {Frontiers in Neural Circuits}, issn = {1662-5110}, doi = {10.3389/fncir.2022.862279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279445}, year = {2022}, abstract = {Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.}, language = {en} } @article{RufFraunholzOechsneretal.2017, author = {Ruf, Franziska and Fraunholz, Martin and {\"O}chsner, Konrad and Kaderschabeck, Johann and Wegener, Christian}, title = {WEclMon - A simple and robust camera-based system to monitor Drosophila eclosion under optogenetic manipulation and natural conditions}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0180238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170755}, pages = {e0180238}, year = {2017}, abstract = {Eclosion in flies and other insects is a circadian-gated behaviour under control of a central and a peripheral clock. It is not influenced by the motivational state of an animal, and thus presents an ideal paradigm to study the relation and signalling pathways between central and peripheral clocks, and downstream peptidergic regulatory systems. Little is known, however, about eclosion rhythmicity under natural conditions, and research into this direction is hampered by the physically closed design of current eclosion monitoring systems. We describe a novel open eclosion monitoring system (WEclMon) that allows the puparia to come into direct contact with light, temperature and humidity. We demonstrate that the system can be used both in the laboratory and outdoors, and shows a performance similar to commercial closed funnel-type monitors. Data analysis is semi-automated based on a macro toolset for the open imaging software Fiji. Due to its open design, the WEclMon is also well suited for optogenetic experiments. A small screen to identify putative neuroendocrine signals mediating time from the central clock to initiate eclosion showed that optogenetic activation of ETH-, EH and myosuppressin neurons can induce precocious eclosion. Genetic ablation of myosuppressin-expressing neurons did, however, not affect eclosion rhythmicity.}, language = {en} } @article{BonteLanckackerWiersmaetal.2008, author = {Bonte, Dries and Lanckacker, Kjell and Wiersma, Elisabeth and Lens, Luc}, title = {Web building flexibility of an orb-web spider in a heterogeneous agricultural landscape}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48262}, year = {2008}, abstract = {Abstract: Intensification of land-use in agricultural landscapes is responsible for a decline of biodiversity which provide important ecosystem services like pest-control. Changes in landscape composition may also induce behavioural changes of predators in response to variation in the biotic or abiotic environment. By controlling for environmentally confounding factors, we here demonstrate that the orb web spider Araneus diadematus alters its web building behaviour in response to changes in the composition of agricultural landscapes. Thereby, the species increases its foraging efficiency (i.e. investments in silk and web asymmetry) with an increase of agricultural land-use at intermediate spatial scales. This intensification is also related to a decrease in the abundance of larger prey. A negative effect of landscape properties at similar spatial scales on spider fitness was recorded when controlling for relative investments in capture thread length. This study consequently documents the web building flexibility in response to changes in landscape composition, possibly due to changes in prey availability.}, language = {en} } @article{Helmreich2010, author = {Helmreich, Ernst J. M.}, title = {Ways and means of coping with uncertainties of the relationship of the genetic blue print to protein structure and function in the cell}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68006}, year = {2010}, abstract = {As one of the disciplines of systems biology, proteomics is central to enabling the elucidation of protein function within the cell; furthermore, the question of how to deduce protein structure and function from the genetic readout has gained new significance. This problem is of particular relevance for proteins engaged in cell signalling. In dealing with this question, I shall critically comment on the reliability and predictability of transmission and translation of the genetic blue print into the phenotype, the protein. Based on this information, I will then evaluate the intentions and goals of today's proteomics and gene-networking and appraise their chances of success. Some of the themes commented on in this publication are explored in greater detail with particular emphasis on the historical roots of concepts and techniques in my forthcoming book, published in German: Von Molek{\"u}len zu Zellen. 100 Jahre experimentelle Biologie. Betrachtungen eines Biochemikers}, subject = {Genetik}, language = {en} } @article{KehrbergerHolzschuh2019, author = {Kehrberger, Sandra and Holzschuh, Andrea}, title = {Warmer temperatures advance flowering in a spring plant more strongly than emergence of two solitary spring bee species}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0218824}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201165}, pages = {e0218824}, year = {2019}, abstract = {Climate warming has the potential to disrupt plant-pollinator interactions or to increase competition of co-flowering plants for pollinators, due to species-specific phenological responses to temperature. However, studies focusing on the effect of temperature on solitary bee emergence and the flowering onset of their food plants under natural conditions are still rare. We studied the effect of temperature on the phenology of the two spring bees Osmia cornuta and Osmia bicornis, by placing bee cocoons on eleven grasslands differing in mean site temperature. On seven grasslands, we additionally studied the effect of temperature on the phenology of the red-list plant Pulsatilla vulgaris, which was the first flowering plant, and of co-flowering plants with later flowering. With a warming of 0.1°C, the abundance-weighted mean emergence of O. cornuta males advanced by 0.4 days. Females of both species did not shift their emergence. Warmer temperatures advanced the abundance-weighted mean flowering of P. vulgaris by 1.3 days per 0.1°C increase, but did not shift flowering onset of co-flowering plants. Competition for pollinators between P. vulgaris and co-flowering plants does not increase within the studied temperature range. We demonstrate that temperature advances plant flowering more strongly than bee emergence suggesting an increased risk of pollinator limitation for the first flowers of P. vulgaris.}, language = {en} } @article{ZhangSiPahl2012, author = {Zhang, Shaowu and Si, Aung and Pahl, Mario}, title = {Visually guided decision making in foraging honeybees}, series = {Frontiers in Neuroscience}, volume = {6}, journal = {Frontiers in Neuroscience}, number = {88}, doi = {10.3389/fnins.2012.00088}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124228}, year = {2012}, abstract = {Honeybees can easily be trained to perform different types of discrimination tasks under controlled laboratory conditions. This review describes a range of experiments carried out with free-flying forager honeybees under such conditions. The research done over the past 30 or so years suggests that cognitive abilities (learning and perception) in insects are more intricate and flexible than was originally imagined. It has become apparent that honeybees are capable of a variety of visually guided tasks, involving decision making under challenging situations: this includes simultaneously making use of different sensory modalities, such as vision and olfaction, and learning to use abstract concepts such as "sameness" and "difference." Many studies have shown that decision making in foraging honeybees is highly flexible. The trained animals learn how to solve a task, and do so with a high accuracy, but when they are presented with a new variation of the task, they apply the learnt rules from the earlier setup to the new situation, and solve the new task as well. Honeybees therefore not only feature a rich behavioral repertoire to choose from, but also make decisions most apt to the current situation. The experiments in this review give an insight into the environmental cues and cognitive resources that are probably highly significant for a forager bee that must continually make decisions regarding patches of resources to be exploited.}, language = {en} } @article{RunggerCrippaTrendelenburgetal.1978, author = {Rungger, M. and Crippa, M. and Trendelenburg, M. F. and Scheer, Ulrich and Franke, Werner W.}, title = {Visualization of rDNA spacer transcription in Xenopus oocytes treated with fluorouridine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33082}, year = {1978}, abstract = {Under the intluence of 5-tluoro-uridine, the ultrastructure of the rDNA transcription units in Xenopus oocytes is altered. Whereas part of the matrix units maintains anormal aspect or shows various degrees of inhibition, in a strong proportion of the transcription units the alternating pattern of matrix units and fibril-free spacer regions is no longer recognized. Transcriptional complexes are found along the entire DNP axis, including the regions of the spacers. These observations support biochemical data on transcription in rDNA spacer region.}, language = {en} }