@article{FlorenvonRintelenHerbertetal.2020, author = {Floren, Andreas and von Rintelen, Thomas and Herbert, Paul D. N. and de Araujo, Bruno Cancian and Schmidt, Stefan and Balke, Michael and Narakusumo, Raden Pramesa and Peggie, Djunijanti and Ubaidillah, Rosichon and von Rintelen, Kristina and M{\"u}ller, Tobias}, title = {Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-73519-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230565}, year = {2020}, abstract = {Tropical mountain forests contribute disproportionately to terrestrial biodiversity but little is known about insect diversity in the canopy and how it is distributed between tree species. We sampled tree-specific arthropod communities from 28 trees by canopy fogging and analysed beetle communities which were first morphotyped and then identified by their DNA barcodes. Our results show that communities from forests at 1100 and 1700 m a.s.l. are almost completely distinct. Diversity was much lower in the upper forest while community structure changed from many rare, less abundant species to communities with a pronounced dominance structure. We also found significantly higher beta-diversity between trees at the lower than higher elevation forest where community similarity was high. Comparisons on tree species found at both elevations reinforced these results. There was little species overlap between sites indicating limited elevational ranges. Furthermore, we exploited the advantage of DNA barcodes to patterns of haplotype diversity in some of the commoner species. Our results support the advantage of fogging and DNA barcodes for community studies and underline the need for comprehensive research aimed at the preservation of these last remaining pristine forests.}, language = {en} } @article{GoetzKunzFinketal.2020, author = {G{\"o}tz, Ralph and Kunz, Tobias C. and Fink, Julian and Solger, Franziska and Schlegel, Jan and Seibel, J{\"u}rgen and Kozjak-Pavlovic, Vera and Rudel, Thomas and Sauer, Markus}, title = {Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-19897-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231248}, year = {2020}, abstract = {Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4x to 10x expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10-20nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 +/- 7.7nm. Imaging of lipid bilayers using light microscopy is challenging. Here the authors label cells using a short chain click-compatible ceramide to visualize mammalian and bacterial membranes with expansion microscopy.}, language = {en} } @article{DiersWagnerBaumetal.2020, author = {Diers, J. and Wagner, J. and Baum, P. and Lichthardt, S. and Kastner, C. and Matthes, N. and Matthes, H. and Germer, C.-T. and L{\"o}b, S. and Wiegering, A.}, title = {Nationwide in-hospital mortality rate following rectal resection for rectal cancer according to annual hospital volume in Germany}, series = {BJS Open}, volume = {4}, journal = {BJS Open}, number = {2}, doi = {10.1002/bjs5.50254}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212878}, pages = {310 -- 319}, year = {2020}, abstract = {Background The impact of hospital volume after rectal cancer surgery is seldom investigated. This study aimed to analyse the impact of annual rectal cancer surgery cases per hospital on postoperative mortality and failure to rescue. Methods All patients diagnosed with rectal cancer and who had a rectal resection procedure code from 2012 to 2015 were identified from nationwide administrative hospital data. Hospitals were grouped into five quintiles according to caseload. The absolute number of patients, postoperative deaths and failure to rescue (defined as in-hospital mortality after a documented postoperative complication) for severe postoperative complications were determined. Results Some 64 349 patients were identified. The overall in-house mortality rate was 3·9 per cent. The crude in-hospital mortality rate ranged from 5·3 per cent in very low-volume hospitals to 2·6 per cent in very high-volume centres, with a distinct trend between volume categories (P < 0·001). In multivariable logistic regression analysis using hospital volume as random effect, very high-volume hospitals (53 interventions/year) had a risk-adjusted odds ratio of 0·58 (95 per cent c.i. 0·47 to 0·73), compared with the baseline in-house mortality rate in very low-volume hospitals (6 interventions per year) (P < 0·001). The overall postoperative complication rate was comparable between different volume quintiles, but failure to rescue decreased significantly with increasing caseload (15·6 per cent after pulmonary embolism in the highest volume quintile versus 38 per cent in the lowest quintile; P = 0·010). Conclusion Patients who had rectal cancer surgery in high-volume hospitals showed better outcomes and reduced failure to rescue rates for severe complications than those treated in low-volume hospitals.}, language = {en} } @article{PolidoriBallesterosWurdacketal.2020, author = {Polidori, Carlo and Ballesteros, Yolanda and Wurdack, Mareike and As{\´i}s, Josep Daniel and Tormos, Jos{\´e} and Ba{\~n}os-Pic{\´o}n, Laura and Schmitt, Thomas}, title = {Low host specialization in the cuckoo wasp, Parnopes grandior, weakens chemical mimicry but does not lead to local adaption}, series = {Insects}, volume = {11}, journal = {Insects}, number = {2}, issn = {2075-4450}, doi = {10.3390/insects11020136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200651}, year = {2020}, abstract = {Insect brood parasites have evolved a variety of strategies to avoid being detected by their hosts. Few previous studies on cuckoo wasps (Hymenoptera: Chrysididae), which are natural enemies of solitary wasps and bees, have shown that chemical mimicry, i.e., the biosynthesis of cuticular hydrocarbons (CHC) that match the host profile, evolved in several species. However, mimicry was not detected in all investigated host-parasite pairs. The effect of host range as a second factor that may play a role in evolution of mimicry has been neglected, since all previous studies were carried out on host specialists and at nesting sites where only one host species occurred. Here we studied the cuckoo wasp Parnopes grandior, which attacks many digger wasp species of the genus Bembix (Hymenoptera: Crabronidae). Given its weak host specialization, P. grandior may either locally adapt by increasing mimicry precision to only one of the sympatric hosts or it may evolve chemical insignificance by reducing the CHC profile complexity and/or CHCs amounts. At a study site harbouring three host species, we found evidence for a weak but appreciable chemical deception strategy in P. grandior. Indeed, the CHC profile of P. grandior was more similar to all sympatric Bembix species than to a non-host wasp species belonging to the same tribe as Bembix. Furthermore, P. grandior CHC profile was equally distant to all the hosts' CHC profiles, thus not pointing towards local adaptation of the CHC profile to one of the hosts' profile. We conducted behavioural assays suggesting that such weak mimicry is sufficient to reduce host aggression, even in absence of an insignificance strategy, which was not detected. Hence, we finally concluded that host range may indeed play a role in shaping the level of chemical mimicry in cuckoo wasps.}, language = {en} } @article{RablAlonsoRodriguezBrehmetal.2020, author = {Rabl, Dominik and Alonso-Rodr{\´i}guez, Aura M. and Brehm, Gunnar and Fiedler, Konrad}, title = {Trait variation in moths mirrors small-scaled ecological gradients in a tropical forest landscape}, series = {Insects}, volume = {11}, journal = {Insects}, number = {9}, issn = {2075-4450}, doi = {10.3390/insects11090612}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213016}, year = {2020}, abstract = {Along environmental gradients, communities are expected to be filtered from the regional species pool by physical constraints, resource availability, and biotic interactions. This should be reflected in species trait composition. Using data on species-rich moth assemblages sampled by light traps in a lowland rainforest landscape in Costa Rica, we show that moths in two unrelated clades (Erebidae-Arctiinae; Geometridae) are much smaller-sized in oil palm plantations than in nearby old-growth forest, with intermediate values at disturbed forest sites. In old-growth forest, Arctiinae predominantly show aposematic coloration as a means of anti-predator defense, whereas this trait is much reduced in the prevalence in plantations. Similarly, participation in M{\"u}llerian mimicry rings with Hymenoptera and Lycidae beetles, respectively, is rare in plantations. Across three topographic types of old-growth forests, community-weighted means of moth traits showed little variation, but in creek forest, both types of mimicry were surprisingly rare. Our results emphasize that despite their mobility, moth assemblages are strongly shaped by local environmental conditions through the interplay of bottom-up and top-down processes. Assemblages in oil palm plantations are highly degraded not only in their biodiversity, but also in terms of trait expression.}, language = {en} } @article{ScheinerStraussThammetal.2020, author = {Scheiner, Ricarda and Strauß, Sina and Thamm, Markus and Farr{\´e}-Armengol, Gerard and Junker, Robert R.}, title = {The bacterium Pantoea ananatis modifies behavioral responses to sugar solutions in honeybees}, series = {Insects}, volume = {11}, journal = {Insects}, number = {10}, issn = {2075-4450}, doi = {10.3390/insects11100692}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216247}, year = {2020}, abstract = {1. Honeybees, which are among the most important pollinators globally, do not only collect pollen and nectar during foraging but may also disperse diverse microbes. Some of these can be deleterious to agricultural crops and forest trees, such as the bacterium Pantoea ananatis, an emerging pathogen in some systems. P. ananatis infections can lead to leaf blotches, die-back, bulb rot, and fruit rot. 2. We isolated P. ananatis bacteria from flowers with the aim of determining whether honeybees can sense these bacteria and if the bacteria affect behavioral responses of the bees to sugar solutions. 3. Honeybees decreased their responsiveness to different sugar solutions when these contained high concentrations of P. ananatis but were not deterred by solutions from which bacteria had been removed. This suggests that their reduced responsiveness was due to the taste of bacteria and not to the depletion of sugar in the solution or bacteria metabolites. Intriguingly, the bees appeared not to taste ecologically relevant low concentrations of bacteria. 4. Synthesis and applications. Our data suggest that honeybees may introduce P.ananatis bacteria into nectar in field-realistic densities during foraging trips and may thus affect nectar quality and plant fitness.}, language = {en} } @article{VenjakobLeonhardtKlein2020, author = {Venjakob, Christine and Leonhardt, Sara and Klein, Alexandra-Maria}, title = {Inter-individual nectar chemistry changes of field scabious, Knautia arvensis}, series = {Insects}, volume = {11}, journal = {Insects}, number = {2}, issn = {2075-4450}, doi = {10.3390/insects11020075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200866}, year = {2020}, abstract = {Nectar is crucial to maintain plant-pollinator mutualism. Nectar quality (nutritional composition) can vary strongly between individuals of the same plant species. The factors driving such inter-individual variation have however not been investigated closer. We investigated nectar quality of field scabious, Knautia arvensis in different grassland plant communities varying in species composition and richness to assess whether nectar quality can be affected by the surrounding plant community. We analyzed (with high performance liquid chromatography) the content of carbohydrates, overall amino acids, and essential amino acids. Amino acid and carbohydrate concentrations and proportions varied among plant individuals and with the surrounding plant community but were not related to the surrounding plant species richness. Total and individual carbohydrate concentrations were lowest, while proportions of the essential amino acids, valine, isoleucine, leucine (all phagostimulatory), and lysine were highest in plant species communities of the highest diversity. Our results show that K. arvensis nectar chemistry varies with the composition of the surrounding plant community, which may alter the taste and nutritional value and thus affect the plant's visitor spectrum and visitation rate. However, the strong inter-individual variation in nectar quality requires additional studies (e.g., in semi-field studies) to disentangle different biotic and abiotic factors contributing to inter-individual nectar chemistry in a plant-community context.}, language = {en} } @article{JahedKavousiFarashianietal.2020, author = {Jahed, Razieh Rafiei and Kavousi, Mohammad Reza and Farashiani, Mohammad Ebrahim and Sagheb-Talebi, Khosro and Babanezhad, Manoochehr and Courbaud, Benoit and Wirtz, Roland and M{\"u}ller, J{\"o}rg and Larrieu, Laurent}, title = {A comparison of the formation rates and composition of tree-related microhabitats in beech-dominated primeval Carpathian and Hyrcanian forests}, series = {Forests}, volume = {11}, journal = {Forests}, number = {2}, issn = {1999-4907}, doi = {10.3390/f11020144}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200849}, year = {2020}, abstract = {Primeval forests in the temperate zone exist only as a few remnants, but theses serve as important reference areas for conservation. As key habitats, tree-related microhabitats (TreMs) are of intense interest to forest ecologists, but little is known about their natural composition and dynamics in different tree species. Beech forms a major part of the temperate forests that extend from Europe, home to European beech Fagus sylvatica L. (Fs), eastward to Iran, where Oriental beech Fagus orientalis Lipsky (Fo) is the dominant species. In this study, we compared TreMs in primeval forests of both species, using data from Fo growing in 25 inventory plots throughout the Hyrcanian forest belt in Iran and from Fs growing in a 9 ha permanent plot in the Uholka Forest of Ukraine. TreMs based on 47 types and 11 subgroups were recorded. Beech trees in the Hyrcanian forest had a higher mean diameter at breast height (dbh) than beech trees in Uholka and contained twice as many TreMs per hectare. Although the mean richness of TreMs per TreM bearing tree was similar in the two species, on the basis of the comparison single trees in two groups (n = 405 vs. 2251), the composition of the TreMs clearly differed, as the proportions of rot holes, root-buttress concavities, and crown deadwood were higher in the Hyrcanian Forest, and those of bark losses, exposed heartwood, and burrs and cankers higher in Uholka Forest. Estimates of TreMs dynamics based on dbh and using Weibull models showed a significantly faster cumulative increase of TreMs in Fo, in which saturation occurred already in trees with a dbh of 70-80 cm. By contrast, the increase in TreMs in Fs was continuous. In both species, the probability density was highest at a dbh of about 30 cm, but was twice as high in Fo. Because of limitations of our study design, the reason behind observed differences of TreM formation and composition between regions remains unclear, as it could be either result of the tree species or the environment, or their interaction. However, the observed differences were more likely the result of differences in the environment than in the two tree species. Nevertheless, our findings demonstrate that the Hyrcanian Forest, recently designated as a natural heritage site in Iran, is unique, not only as a tertiary relict or due to its endemic trees, herbs and arthropods, but also because of its TreMs, which form a distinct and rich habitat for associated taxa, including endemic saproxylic species.}, language = {en} } @article{OelschlaegelWeissSadanSalpeteretal.2020, author = {Oelschlaegel, Diana and Weiss Sadan, Tommy and Salpeter, Seth and Krug, Sebastian and Blum, Galia and Schmitz, Werner and Schulze, Almut and Michl, Patrick}, title = {Cathepsin inhibition modulates metabolism and polarization of tumor-associated macrophages}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {9}, issn = {2072-6694}, doi = {10.3390/cancers12092579}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213040}, year = {2020}, abstract = {Stroma-infiltrating immune cells, such as tumor-associated macrophages (TAM), play an important role in regulating tumor progression and chemoresistance. These effects are mostly conveyed by secreted mediators, among them several cathepsin proteases. In addition, increasing evidence suggests that stroma-infiltrating immune cells are able to induce profound metabolic changes within the tumor microenvironment. In this study, we aimed to characterize the impact of cathepsins in maintaining the TAM phenotype in more detail. For this purpose, we investigated the molecular effects of pharmacological cathepsin inhibition on the viability and polarization of human primary macrophages as well as its metabolic consequences. Pharmacological inhibition of cathepsins B, L, and S using a novel inhibitor, GB111-NH\(_2\), led to changes in cellular recycling processes characterized by an increased expression of autophagy- and lysosome-associated marker genes and reduced adenosine triphosphate (ATP) content. Decreased cathepsin activity in primary macrophages further led to distinct changes in fatty acid metabolites associated with increased expression of key modulators of fatty acid metabolism, such as fatty acid synthase (FASN) and acid ceramidase (ASAH1). The altered fatty acid profile was associated with an increased synthesis of the pro-inflammatory prostaglandin PGE\(_2\), which correlated with the upregulation of numerous NF\(_k\)B-dependent pro-inflammatory mediators, including interleukin-1 (IL-1), interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and tumor necrosis factor-alpha (TNFα). Our data indicate a novel link between cathepsin activity and metabolic reprogramming in macrophages, demonstrated by a profound impact on autophagy and fatty acid metabolism, which facilitates a pro-inflammatory micromilieu generally associated with enhanced tumor elimination. These results provide a strong rationale for therapeutic cathepsin inhibition to overcome the tumor-promoting effects of the immune-evasive tumor micromilieu.}, language = {en} } @article{LeonhardtLihoreauSpaethe2020, author = {Leonhardt, Sara D. and Lihoreau, Mathieu and Spaethe, Johannes}, title = {Mechanisms of nutritional resource exploitation by insects}, series = {Insects}, volume = {11}, journal = {Insects}, number = {9}, issn = {2075-4450}, doi = {10.3390/insects11090570}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211161}, year = {2020}, abstract = {Insects have evolved an extraordinary range of nutritional adaptations to exploit other animals, plants, bacteria, fungi and soils as resources in terrestrial and aquatic environments. This special issue provides some new insights into the mechanisms underlying these adaptations. Contributions comprise lab and field studies investigating the chemical, physiological, cognitive and behavioral mechanisms that enable resource exploitation and nutrient intake regulation in insects. The collection of papers highlights the need for more studies on the comparative sensory ecology, underlying nutritional quality assessment, cue perception and decision making to fully understand how insects adjust resource selection and exploitation in response to environmental heterogeneity and variability.}, language = {en} }