@article{CosarinskyRoemerRoces2020, author = {Cosarinsky, Marcela I. and R{\"o}mer, Daniela and Roces, Flavio}, title = {Nest Turrets of Acromyrmex Grass-Cutting Ants: Micromorphology Reveals Building Techniques and Construction Dynamics}, series = {Insects}, volume = {11}, journal = {Insects}, number = {2}, issn = {2075-4450}, doi = {10.3390/insects11020140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200680}, year = {2020}, abstract = {Acromyrmex fracticornis grass-cutting ants construct conspicuous chimney-shaped nest turrets made of intermeshed grass fragments. We asked whether turrets are constructed by merely piling up nearby materials around the entrance, or whether ants incorporate different materials as the turret develops. By removing the original nest turrets and following their rebuilding process over three consecutive days, age-dependent changes in wall morphology and inner lining fabrics were characterized. Micromorphological descriptions based on thin sections of turret walls revealed the building behaviors involved. Ants started by collecting nearby twigs and dry grass fragments that are piled up around the nest entrance. Several large fragments held the structure like beams. As a net-like structure grew, soil pellets were placed in between the intermeshed plant fragments from the turret base to the top, reinforcing the structure. Concomitantly, the turret inner wall was lined with soil pellets, starting from the base. Therefore, the consolidation of the turret occurred both over time and from its base upwards. It is argued that nest turrets do not simply arise by the arbitrary deposition of nearby materials, and that workers selectively incorporate large materials at the beginning, and respond to the developing structure by reinforcing the intermeshed plant fragments over time.}, language = {en} } @article{DoerflerCadotteWeisseretal.2020, author = {Doerfler, Inken and Cadotte, Marc W. and Weisser, Wolfgang W. and M{\"u}ller, J{\"o}rg and Gossner, Martin M. and Heibl, Christoph and B{\"a}ssler, Claus and Thorn, Simon and Seibold, Sebastian}, title = {Restoration-oriented forest management affects community assembly patterns of deadwood-dependent organisms}, series = {Journal of Applied Ecology}, volume = {57}, journal = {Journal of Applied Ecology}, number = {12}, doi = {10.1111/1365-2664.13741}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217918}, pages = {2429 -- 2440}, year = {2020}, abstract = {Land-use intensification leads to loss and degradation of habitats and is thus a major driver of biodiversity loss. Restoration strategies typically focus on promoting biodiversity but often neglect that land-use intensification could have changed the underlying mechanisms of community assembly. Since assembly mechanisms determine the diversity and composition of communities, we propose that evaluation of restoration strategies should consider effects of restoration on biodiversity and community assembly. Using a multi-taxon approach, we tested whether a strategy that promotes forest biodiversity by restoring deadwood habitats also affects assembly patterns. We assessed saproxylic (i.e. deadwood-dependent) beetles and fungi, as well as non-saproxylic plants and birds in 68 beech forest plots in southern Germany, 8 years after the commencement of a restoration project. To assess changes in community assembly, we analysed the patterns of functional-phylogenetic diversity, community-weighted mean (CWM) traits and their diversity. We hypothesized that restoration increases habitat amount and heterogeneity of deadwood and reduces canopy cover and thereby decreases the strength of environmental filters imposed by past silvicultural intensification, such as a low amount in deadwood. With the restoration of deadwood habitats, saproxylic beetle communities became less functionally-phylogenetically similar, whereas the assembly patterns of saproxylic fungi and non-saproxylic taxa remained unaffected by deadwood restoration. Among the traits analysed, deadwood diameter niche position of species was most strongly affected indicating that the enrichment of large deadwood objects led to lower functional-phylogenetical similarity of saproxylic beetles. Community assembly and traits of plants were mainly influenced by microclimate associated with changes in canopy cover. Synthesis and applications. Our results indicate that the positive effects of deadwood restoration on saproxylic beetle richness are associated with an increase in deadwood amount. This might be linked to an increase in deadwood heterogeneity, and therefore decreasing management-induced environmental filters. Deadwood enrichment can thus be considered an effective restoration strategy which reduces the negative effects of intense forest management on saproxylic taxa by not only promoting biodiversity but also by decreasing the environmental filters shaping saproxylic beetle communities, thus allowing the possibly for more interactions between species and a higher functional diversity.}, language = {en} } @article{FazeliBeerGeisenhofetal.2020, author = {Fazeli, Gholamreza and Beer, Katharina B. and Geisenhof, Michaela and Tr{\"o}ger, Sarah and K{\"o}nig, Julia and M{\"u}ller-Reichert, Thomas and Wehman, Ann M.}, title = {Loss of the Major Phosphatidylserine or Phosphatidylethanolamine Flippases Differentially Affect Phagocytosis}, series = {Frontiers in Cell and Developmental Biology}, volume = {8}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2020.00648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208771}, year = {2020}, abstract = {The lipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEth) are normally asymmetrically localized to the cytosolic face of membrane bilayers, but can both be externalized during diverse biological processes, including cell division, cell fusion, and cell death. Externalized lipids in the plasma membrane are recognized by lipid-binding proteins to regulate the clearance of cell corpses and other cell debris. However, it is unclear whether PtdSer and PtdEth contribute in similar or distinct ways to these processes. We discovered that disruption of the lipid flippases that maintain PtdSer or PtdEth asymmetry in the plasma membrane have opposite effects on phagocytosis in Caenorhabditis elegans embryos. Constitutive PtdSer externalization caused by disruption of the major PtdSer flippase TAT-1 led to increased phagocytosis of cell debris, sometimes leading to two cells engulfing the same debris. In contrast, PtdEth externalization caused by depletion of the major PtdEth flippase TAT-5 or its activator PAD-1 disrupted phagocytosis. These data suggest that PtdSer and PtdEth externalization have opposite effects on phagocytosis. Furthermore, externalizing PtdEth is associated with increased extracellular vesicle release, and we present evidence that the extent of extracellular vesicle accumulation correlates with the extent of phagocytic defects. Thus, a general loss of lipid asymmetry can have opposing impacts through different lipid subtypes simultaneously exerting disparate effects.}, language = {en} } @article{RothZoderZamanetal.2020, author = {Roth, Nicolas and Zoder, Sebastian and Zaman, Assad Ali and Thorn, Simon and Schmidl, J{\"u}rgen}, title = {Long-term monitoring reveals decreasing water beetle diversity, loss of specialists and community shifts over the past 28 years}, series = {Insect Conservation and Diversity}, volume = {13}, journal = {Insect Conservation and Diversity}, number = {2}, doi = {10.1111/icad.12411}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214905}, pages = {140 -- 150}, year = {2020}, abstract = {Lentic freshwater organisms are influenced by a multitude of factors, including geomorphology, hydrology, anthropogenic impacts and climate change. Organisms that depend on patchy resources such as water beetles may also be sensitive to anthropogenic habitat degradation, like pollution, eutrophication, water level or management alteration. To assess composition and ecological trends in the water beetle communities of Central Europe, we sampled water beetles (Dytiscidae, Haliplidae, Noteridae) in 33 water bodies in Southern Germany from 1991 to 2018. We used manual, time-standardised capture during three periods: between 1991 and 1995, 2007 and 2008, and 2017 and 2018. During the 28-year survey period, we captured a total of 81 species. We found annual declines in both species number (ca -1\%) and abundance (ca -2\%). Also, community composition showed significant changes over time. The significant impact of pH on the community composition suggests that the recorded changes through time partly reflect natural succession processes. However, a pronounced decline of beetle species belonging to the moor-related beetle associations indicated that Central European water beetles are also threatened by non-successional factors, including desiccation, increased nitrogen input and/or mineralisation, and the loss of specific habitats. This trend to physiographical homogenisation resulted in corresponding community composition shifts. To effectively protect endangered species, conservation strategies need to be aimed at regularly creating new water bodies with mineralic bottom substratum, and maintenance of moor water bodies that represent late successional stages.}, language = {en} } @article{KunzGoetzGaoetal.2020, author = {Kunz, Tobias C. and G{\"o}tz, Ralph and Gao, Shiqiang and Sauer, Markus and Kozjak-Pavlovic, Vera}, title = {Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae}, series = {Frontiers in Cell and Developmental Biology}, volume = {8}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2020.00617}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208296}, year = {2020}, abstract = {Mitochondria are double membrane bound organelles indispensable for biological processes such as apoptosis, cell signaling, and the production of many important metabolites, which includes ATP that is generated during the process known as oxidative phosphorylation (OXPHOS). The inner membrane contains folds called cristae, which increase the membrane surface and thus the amount of membrane-bound proteins necessary for the OXPHOS. These folds have been of great interest not only because of their importance for energy conversion, but also because changes in morphology have been linked to a broad range of diseases from cancer, diabetes, neurodegenerative diseases, to aging and infection. With a distance between opposing cristae membranes often below 100 nm, conventional fluorescence imaging cannot provide a resolution sufficient for resolving these structures. For this reason, various highly specialized super-resolution methods including dSTORM, PALM, STED, and SIM have been applied for cristae visualization. Expansion Microscopy (ExM) offers the possibility to perform super-resolution microscopy on conventional confocal microscopes by embedding the sample into a swellable hydrogel that is isotropically expanded by a factor of 4-4.5, improving the resolution to 60-70 nm on conventional confocal microscopes, which can be further increased to ∼ 30 nm laterally using SIM. Here, we demonstrate that the expression of the mitochondrial creatine kinase MtCK linked to marker protein GFP (MtCK-GFP), which localizes to the space between the outer and the inner mitochondrial membrane, can be used as a cristae marker. Applying ExM on mitochondria labeled with this construct enables visualization of morphological changes of cristae and localization studies of mitochondrial proteins relative to cristae without the need for specialized setups. For the first time we present the combination of specific mitochondrial intermembrane space labeling and ExM as a tool for studying internal structure of mitochondria.}, language = {en} } @article{ThornChaoBernhardtRoemermannetal.2020, author = {Thorn, Simon and Chao, Anne and Bernhardt-R{\"o}mermann, Markus and Chen, Yan-Han and Georgiev, Kostadin B. and Heibl, Christoph and M{\"u}ller, J{\"o}rg and Sch{\"a}fer, Hanno and B{\"a}ssler, Claus}, title = {Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests}, series = {Ecology}, volume = {101}, journal = {Ecology}, number = {3}, doi = {10.1002/ecy.2949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212378}, pages = {e02949}, year = {2020}, abstract = {Following natural disturbances, additional anthropogenic disturbance may alter community recovery by affecting the occurrences of species, functional groups, and evolutionary lineages. However, our understanding of whether rare, common, or dominant species, functional groups, or evolutionary lineages are most strongly affected by an additional disturbance, particularly across multiple taxa, is limited. Here, we used a generalized diversity concept based on Hill numbers to quantify the community differences of vascular plants, bryophytes, lichens, wood-inhabiting fungi, saproxylic beetles, and birds in a storm-disturbed, experimentally salvage logged forest. Communities of all investigated species groups showed dissimilarities between logged and unlogged plots. Most species groups showed no significant changes in dissimilarities between logged and unlogged plots over the first seven years of succession, indicating a lack of community recovery. In general, the dissimilarities of communities were mainly driven by rare species. Convergence of dissimilarities occurred more often than divergence during the early stages of succession for rare species, indicating a major role in driving decreasing taxonomic dissimilarities between logged and unlogged plots over time. Trends in species dissimilarities only partially match the trends in dissimilarities of functional groups and evolutionary lineages, with little significant changes in successional trajectories. Nevertheless, common and dominant species contributed to a convergence of dissimilarities over time in the case of the functional dissimilarities of wood-inhabiting fungi. Our study shows that salvage logging following disturbances can alter successional trajectories in early stages of forest succession following natural disturbances. However, community changes over time may differ remarkably in different taxonomic groups and are best detected based on taxonomic, rather than functional or phylogenetic dissimilarities.}, language = {en} } @article{FerberGerhardsSaueretal.2020, author = {Ferber, Elena and Gerhards, Julian and Sauer, Miriam and Krischke, Markus and Dittrich, Marcus T. and M{\"u}ller, Tobias and Berger, Susanne and Fekete, Agnes and Mueller, Martin J.}, title = {Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb}, series = {Frontiers in Plant Science}, volume = {11}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2020.00887}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207104}, year = {2020}, abstract = {In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms.}, language = {en} } @article{UrbanRemmeleDittrichetal.2020, author = {Urban, Lara and Remmele, Christian W. and Dittrich, Marcus and Schwarz, Roland F. and M{\"u}ller, Tobias}, title = {covRNA: discovering covariate associations in large-scale gene expression data}, series = {BMC Reserach Notes}, volume = {13}, journal = {BMC Reserach Notes}, doi = {10.1186/s13104-020-04946-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229258}, year = {2020}, abstract = {Objective The biological interpretation of gene expression measurements is a challenging task. While ordination methods are routinely used to identify clusters of samples or co-expressed genes, these methods do not take sample or gene annotations into account. We aim to provide a tool that allows users of all backgrounds to assess and visualize the intrinsic correlation structure of complex annotated gene expression data and discover the covariates that jointly affect expression patterns. Results The Bioconductor package covRNA provides a convenient and fast interface for testing and visualizing complex relationships between sample and gene covariates mediated by gene expression data in an entirely unsupervised setting. The relationships between sample and gene covariates are tested by statistical permutation tests and visualized by ordination. The methods are inspired by the fourthcorner and RLQ analyses used in ecological research for the analysis of species abundance data, that we modified to make them suitable for the distributional characteristics of both, RNA-Seq read counts and microarray intensities, and to provide a high-performance parallelized implementation for the analysis of large-scale gene expression data on multi-core computational systems. CovRNA provides additional modules for unsupervised gene filtering and plotting functions to ensure a smooth and coherent analysis workflow.}, language = {en} } @article{GromaHorstDasetal.2020, author = {Groma, Michaela and Horst, Sarah A. and Das, Sudip and Huettel, Bruno and Klepsch, Maximilian and Rudel, Thomas and Medina, Eva and Fraunholz, Martin}, title = {Identification of a Novel LysR-Type Transcriptional Regulator in Staphylococcus aureus That Is Crucial for Secondary Tissue Colonization during Metastatic Bloodstream Infection}, series = {mbio}, volume = {11}, journal = {mbio}, number = {4}, doi = {10.1128/mBio.01646-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230473}, year = {2020}, abstract = {Staphylococcus aureus is a common cause of bacteremia that can lead to severe complications once the bacteria exit the bloodstream and establish infection in secondary organs. Despite its clinical relevance, little is known about the bacterial factors facilitating the development of these metastatic infections. Here, we used an S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) to identify genes that are critical for efficient bacterial colonization of secondary organs in a murine model of metastatic bloodstream infection. Our transposon screen identified a LysR-type transcriptional regulator (LTTR), which was required for efficient colonization of secondary organs such as the kidneys in infected mice. The critical role of LTTR in secondary organ colonization was confirmed using an isogenic mutant deficient in the expression of LTTR. To identify the set of genes controlled by LTTR, we used an S. aureus strain carrying the LTTR gene in an inducible expression plasmid. Gene expression analysis upon induction of LTTR showed increased transcription of genes involved in branched-chain amino acid biosynthesis, a methionine sulfoxide reductase, and a copper transporter as well as decreased transcription of genes coding for urease and components of pyrimidine nucleotides. Furthermore, we show that transcription of LTTR is repressed by glucose, is induced under microaerobic conditions, and required trace amounts of copper ions. Our data thus pinpoints LTTR as an important element that enables a rapid adaptation of S. aureus to the changing host microenvironment. IMPORTANCE Staphylococcus aureus is an important pathogen that can disseminate via the bloodstream and establish metastatic infections in distant organs. To achieve a better understanding of the bacterial factors facilitating the development of these metastatic infections, we used in this study a Staphylococcus aureus transposon mutant library in a murine model of intravenous infection, where bacteria first colonize the liver as the primary infection site and subsequently progress to secondary sites such as the kidney and bones. We identified a novel LysR-type transcriptional regulator (LTTR), which was specifically required by S. aureus for efficient colonization of secondary organs. We also determined the transcriptional activation as well as the regulon of LTTR, which suggests that this regulator is involved in the metabolic adaptation of S. aureus to the host microenvironment found in secondary infection sites.}, language = {en} } @article{PetrovGentschevVyalkovaetal.2020, author = {Petrov, Ivan and Gentschev, Ivaylo and Vyalkova, Anna and Elashry, Mohamed I. and Klymiuk, Michele C. and Arnhold, Stefan and Szalay, Aladar A.}, title = {Canine Adipose-Derived Mesenchymal Stem Cells (cAdMSCs) as a "Trojan Horse" in Vaccinia Virus Mediated Oncolytic Therapy against Canine Soft Tissue Sarcomas}, series = {Viruses}, volume = {12}, journal = {Viruses}, number = {7}, doi = {10.3390/v12070750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236007}, year = {2020}, abstract = {Several oncolytic viruses (OVs) including various human and canine adenoviruses, canine distemper virus, herpes-simplex virus, reovirus, and members of the poxvirus family, such as vaccinia virus and myxoma virus, have been successfully tested for canine cancer therapy in preclinical and clinical settings. The success of the cancer virotherapy is dependent on the ability of oncolytic viruses to overcome the attacks of the host immune system, to preferentially infect and lyse cancer cells, and to initiate tumor-specific immunity. To date, several different strategies have been developed to overcome the antiviral host defense barriers. In our study, we used canine adipose-derived mesenchymal stem cells (cAdMSCs) as a "Trojan horse" for the delivery of oncolytic vaccinia virus Copenhagen strain to achieve maximum oncolysis against canine soft tissue sarcoma (CSTS) tumors. A single systemic administration of vaccinia virus-loaded cAdMSCs was found to be safe and led to the significant reduction and substantial inhibition of tumor growth in a CSTS xenograft mouse model. This is the first example that vaccinia virus-loaded cAdMSCs could serve as a therapeutic agent against CSTS tumors.}, language = {en} }