@article{Prieto‐GarciaHartmannReisslandetal.2020, author = {Prieto-Garcia, Cristian and Hartmann, Oliver and Reissland, Michaela and Braun, Fabian and Fischer, Thomas and Walz, Susanne and Sch{\"u}lein-V{\"o}lk, Christina and Eilers, Ursula and Ade, Carsten P. and Calzado, Marco A. and Orian, Amir and Maric, Hans M. and M{\"u}nch, Christian and Rosenfeldt, Mathias and Eilers, Martin and Diefenbacher, Markus E.}, title = {Maintaining protein stability of ∆Np63 via USP28 is required by squamous cancer cells}, series = {EMBO Molecular Medicine}, volume = {12}, journal = {EMBO Molecular Medicine}, number = {4}, doi = {10.15252/emmm.201911101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218303}, year = {2020}, abstract = {The transcription factor ∆Np63 is a master regulator of epithelial cell identity and essential for the survival of squamous cell carcinoma (SCC) of lung, head and neck, oesophagus, cervix and skin. Here, we report that the deubiquitylase USP28 stabilizes ∆Np63 and maintains elevated ∆NP63 levels in SCC by counteracting its proteasome-mediated degradation. Impaired USP28 activity, either genetically or pharmacologically, abrogates the transcriptional identity and suppresses growth and survival of human SCC cells. CRISPR/Cas9-engineered in vivo mouse models establish that endogenous USP28 is strictly required for both induction and maintenance of lung SCC. Our data strongly suggest that targeting ∆Np63 abundance via inhibition of USP28 is a promising strategy for the treatment of SCC tumours.}, language = {en} } @article{GrohRoessler2020, author = {Groh, Claudia and R{\"o}ssler, Wolfgang}, title = {Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee}, series = {Insects}, volume = {11}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects11010043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200774}, year = {2020}, abstract = {Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect.}, language = {en} } @article{BiscottiCarducciBaruccaetal.2020, author = {Biscotti, Maria Assunta and Carducci, Federica and Barucca, Marco and Gerdol, Marco and Pallavicini, Alberto and Schartl, Manfred and Canapa, Adriana and Contar Adolfi, Mateus}, title = {The transcriptome of the newt Cynops orientalis provides new insights into evolution and function of sexual gene networks in sarcopterygians}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-62408-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227326}, year = {2020}, abstract = {Amphibians evolved in the Devonian period about 400 Mya and represent a transition step in tetrapod evolution. Among amphibians, high-throughput sequencing data are very limited for Caudata, due to their largest genome sizes among terrestrial vertebrates. In this paper we present the transcriptome from the fire bellied newt Cynops orientalis. Data here presented display a high level of completeness, comparable to the fully sequenced genomes available from other amphibians. Moreover, this work focused on genes involved in gametogenesis and sexual development. Surprisingly, the gsdf gene was identified for the first time in a tetrapod species, so far known only from bony fish and basal sarcopterygians. Our analysis failed to isolate fgf24 and foxl3, supporting the possible loss of both genes in the common ancestor of Rhipidistians. In Cynops, the expression analysis of genes described to be sex-related in vertebrates singled out an expected functional role for some genes, while others displayed an unforeseen behavior, confirming the high variability of the sex-related pathway in vertebrates.}, language = {en} } @article{RuedenauerRaubenheimerKessnerBeierleinetal.2020, author = {Ruedenauer, Fabian A. and Raubenheimer, David and Kessner-Beierlein, Daniela and Grund-Mueller, Nils and Noack, Lisa and Spaethe, Johannes and Leonhardt, Sara D.}, title = {Best be(e) on low fat: linking nutrient perception, regulation and fitness}, series = {Ecology Letters}, volume = {23}, journal = {Ecology Letters}, number = {3}, doi = {10.1111/ele.13454}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208709}, pages = {545-554}, year = {2020}, abstract = {Preventing malnutrition through consuming nutritionally appropriate resources represents a challenge for foraging animals. This is due to often high variation in the nutritional quality of available resources. Foragers consequently need to evaluate different food sources. However, even the same food source can provide a plethora of nutritional and non-nutritional cues, which could serve for quality assessment. We show that bumblebees, Bombus terrestris , overcome this challenge by relying on lipids as nutritional cue when selecting pollen. The bees 'prioritised' lipid perception in learning experiments and avoided lipid consumption in feeding experiments, which supported survival and reproduction. In contrast, survival and reproduction were severely reduced by increased lipid contents. Our study highlights the importance of fat regulation for pollen foraging bumblebees. It also reveals that nutrient perception, nutrient regulation and reproductive fitness can be linked, which represents an effective strategy enabling quick foraging decisions that prevent malnutrition and maximise fitness.}, language = {en} } @article{LeverkusGustafssonLindenmayeretal.2020, author = {Leverkus, Alexandro B and Gustafsson, Lena and Lindenmayer, David B and Castro, Jorge and Rey Benayas, Jos{\´e} Mar{\´i}a and Ranius, Thomas and Thorn, Simon}, title = {Salvage logging effects on regulating ecosystem services and fuel loads}, series = {Frontiers in Ecology and the Environment}, volume = {18}, journal = {Frontiers in Ecology and the Environment}, number = {7}, doi = {10.1002/fee.2219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216111}, pages = {391 -- 400}, year = {2020}, abstract = {Salvage logging, or logging after natural disturbances such as wildfires, insect outbreaks, and windstorms, is carried out to recover some of a forest's natural and/or economic capital. However, trade-offs between management objectives and a lack of consensus on the ecological consequences of salvage logging impair science-based decision making on the management of forests after natural disturbances. We conducted a global meta-analysis of the impacts of salvage logging on regulating ecosystem services and on fuel loads, as a frequent post-disturbance objective is preventing subsequent wildfires that could be fueled by the accumulation of dead trunks and branches. Salvage logging affected ecosystem services in a moderately negative way, regardless of disturbance type and severity, time elapsed since salvage logging, intensity of salvage logging, and the group of regulating ecosystem services being considered. However, prolonging the time between natural disturbance and salvage logging mitigated negative effects on regulating ecosystem services. Salvage logging had no overall effect on surface fuels; rather, different fuel types responded differently depending on the time elapsed since salvage logging. Delaying salvage logging by ~2-4 years may reduce negative ecological impacts without affecting surface fuel loads.}, language = {en} } @article{YangHeydarianKozjakPavlovicetal.2020, author = {Yang, Tao and Heydarian, Motaharehsadat and Kozjak-Pavlovic, Vera and Urban, Manuela and Harbottle, Richard P. and Rudel, Thomas}, title = {Folliculin Controls the Intracellular Survival and Trans-Epithelial Passage of Neisseria gonorrhoeae}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {422}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.00422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211372}, year = {2020}, abstract = {Neisseria gonorrhoeae, a Gram-negative obligate human pathogenic bacterium, infects human epithelial cells and causes sexually transmitted diseases. Emerging multi-antibiotic resistant gonococci and increasing numbers of infections complicate the treatment of infected patients. Here, we used an shRNA library screen and next-generation sequencing to identify factors involved in epithelial cell infection. Folliculin (FLCN), a 64 kDa protein with a tumor repressor function was identified as a novel host factor important for N. gonorrhoeae survival after uptake. We further determined that FLCN did not affect N. gonorrhoeae adherence and invasion but was essential for its survival in the cells by modulating autophagy. In addition, FLCN was also required to maintain cell to cell contacts in the epithelial layer. In an infection model with polarized cells, FLCN inhibited the polarized localization of E-cadherin and the transcytosis of gonococci across polarized epithelial cells. In conclusion, we demonstrate here the connection between FLCN and bacterial infection and in particular the role of FLCN in the intracellular survival and transcytosis of gonococci across polarized epithelial cell layers.}, language = {en} } @article{AuerHuegelschaefferFischeretal.2020, author = {Auer, Daniela and H{\"u}gelsch{\"a}ffer, Sophie D. and Fischer, Annette B. and Rudel, Thomas}, title = {The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion}, series = {Cellular Microbiology}, volume = {22}, journal = {Cellular Microbiology}, number = {5}, doi = {10.1111/cmi.13136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208675}, pages = {e13136}, year = {2020}, abstract = {Chlamydia trachomatis is the main cause of sexually transmitted diseases worldwide. As obligate intracellular bacteria Chlamydia replicate in a membrane bound vacuole called inclusion and acquire nutrients for growth and replication from their host cells. However, like all intracellular bacteria, Chlamydia have to prevent eradication by the host's cell autonomous system. The chlamydial deubiquitinase Cdu1 is secreted into the inclusion membrane, facing the host cell cytosol where it deubiquitinates cellular proteins. Here we show that inactivation of Cdu1 causes a growth defect of C. trachomatis in primary cells. Moreover, ubiquitin and several autophagy receptors are recruited to the inclusion membrane of Cdu1-deficient Chlamydia . Interestingly, the growth defect of cdu1 mutants is not rescued when autophagy is prevented. We find reduced recruitment of Golgi vesicles to the inclusion of Cdu1 mutants indicating that vesicular trafficking is altered in bacteria without active deubiquitinase (DUB). Our work elucidates an important role of Cdu1 in the functional preservation of the chlamydial inclusion surface.}, language = {en} } @article{WhisnantJuergesHennigetal.2020, author = {Whisnant, Adam W. and J{\"u}rges, Christopher S. and Hennig, Thomas and Wyler, Emanuel and Prusty, Bhupesh and Rutkowski, Andrzej J. and L'hernault, Anne and Djakovic, Lara and G{\"o}bel, Margarete and D{\"o}ring, Kristina and Menegatti, Jennifer and Antrobus, Robin and Matheson, Nicholas J. and K{\"u}nzig, Florian W. H. and Mastrobuoni, Guido and Bielow, Chris and Kempa, Stefan and Liang, Chunguang and Dandekar, Thomas and Zimmer, Ralf and Landthaler, Markus and Gr{\"a}sser, Friedrich and Lehner, Paul J. and Friedel, Caroline C. and Erhard, Florian and D{\"o}lken, Lars}, title = {Integrative functional genomics decodes herpes simplex virus 1}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-15992-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229884}, year = {2020}, abstract = {The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution. Here, using computational integration of multi-omics data, the authors provide a detailed transcriptome and translatome of herpes simplex virus 1 (HSV-1), including previously unidentified ORFs and N-terminal extensions. The study also provides a HSV-1 genome browser and should be a valuable resource for further research.}, language = {en} } @article{HabensteinAminiGruebeletal.2020, author = {Habenstein, Jens and Amini, Emad and Gr{\"u}bel, Kornelia and el Jundi, Basil and R{\"o}ssler, Wolfgang}, title = {The brain of Cataglyphis ants: Neuronal organization and visual projections}, series = {Journal of Comparative Neurology}, volume = {528}, journal = {Journal of Comparative Neurology}, number = {18}, doi = {10.1002/cne.24934}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218212}, pages = {3479 -- 3506}, year = {2020}, abstract = {Cataglyphis ants are known for their outstanding navigational abilities. They return to their inconspicuous nest after far-reaching foraging trips using path integration, and whenever available, learn and memorize visual features of panoramic sceneries. To achieve this, the ants combine directional visual information from celestial cues and panoramic scenes with distance information from an intrinsic odometer. The largely vision-based navigation in Cataglyphis requires sophisticated neuronal networks to process the broad repertoire of visual stimuli. Although Cataglyphis ants have been subjected to many neuroethological studies, little is known about the general neuronal organization of their central brain and the visual pathways beyond major circuits. Here, we provide a comprehensive, three-dimensional neuronal map of synapse-rich neuropils in the brain of Cataglyphis nodus including major connecting fiber systems. In addition, we examined neuronal tracts underlying the processing of visual information in more detail. This study revealed a total of 33 brain neuropils and 30 neuronal fiber tracts including six distinct tracts between the optic lobes and the cerebrum. We also discuss the importance of comparative studies on insect brain architecture for a profound understanding of neuronal networks and their function.}, language = {en} } @article{BoetzlSchueleKraussetal.2020, author = {Boetzl, Fabian A. and Schuele, Maren and Krauss, Jochen and Steffan-Dewenter, Ingolf}, title = {Pest control potential of adjacent agri-environment schemes varies with crop type and is shaped by landscape context and within-field position}, series = {Journal of Applied Ecology}, volume = {57}, journal = {Journal of Applied Ecology}, number = {8}, doi = {10.1111/1365-2664.13653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218265}, pages = {1482 -- 1493}, year = {2020}, abstract = {Increasing natural pest control in agricultural fields is an important aim of ecological intensification. Combined effects of landscape context and local placement of agri-environmental schemes (AES) on natural pest control and within-field distance functions of natural pest control agents have rarely been addressed but might affect the distribution of biocontrol providers. Importantly, it is currently unknown whether ecosystem services provided by adjacent AES are consistent for different crop types during crop rotation. In this study, we assessed whether crop rotation from oilseed rape to cereals altered within-field distance functions of ground-dwelling predators from adjacent agri-environmental fields along a gradient in landscape context. Additionally, we recorded crop pests, predation rates, parasitoids as well as crop yields on a total of 30 study sites. Distance functions varied between trophic levels: Carabid richness decreased while densities of carabid beetles, staphylinid beetles as well as crop yields increased towards the field centres. Distance functions of parasitoids and pests were modulated by the amount of semi-natural habitat in the surrounding landscape, while the effects of adjacent AES were limited. Distance decay functions found for ground-dwelling predators in oilseed rape in the previous year were not always present in cereals. Increasing distance to the field edge also increased effects of crop rotation on carabid beetle assemblages, indicating a source habitat function of field edges. Synthesis and applications. Distance functions of natural pest control are not universal and the effects of agri-environmental schemes (AES) in different adjacent crops during crop rotation vary and depend on ecological contrasts. A network of semi-natural habitats and spatially optimized AES habitats can benefit pest control in agricultural landscapes, but constraints as a result of crop type need to be addressed by annually targeted, spatially shifting agri-environment schemes for different crops.}, language = {en} }