@article{KohlRutschmann2018, author = {Kohl, Patrick Laurenz and Rutschmann, Benjamin}, title = {The neglected bee trees: European beech forests as a home for feral honey bee colonies}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, number = {e4602}, doi = {10.7717/peerj.4602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176512}, year = {2018}, abstract = {It is a common belief that feral honey bee colonies (Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11-0.14 colonies/km\(^{2}\). Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species' perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.}, language = {en} } @article{BiscottiAdolfiBaruccaetal.2018, author = {Biscotti, Maria Assunta and Adolfi, Mateus Contar and Barucca, Marco and Forconi, Mariko and Pallavicini, Alberto and Gerdol, Marco and Canapa, Adriana and Schartl, Manfred}, title = {A comparative view on sex differentiation and gametogenesis genes in lungfish and coelacanths}, series = {Genome Biology and Evolution}, volume = {10}, journal = {Genome Biology and Evolution}, number = {6}, doi = {10.1093/gbe/evy101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176774}, pages = {1430-1444}, year = {2018}, abstract = {Gonadal sex differentiation and reproduction are the keys to the perpetuation of favorable gene combinations and positively selected traits. In vertebrates, several gonad development features that differentiate tetrapods and fishes are likely to be, at least in part, related to the water-to-land transition. The collection of information from basal sarcopterygians, coelacanths, and lungfishes, is crucial to improve our understanding of the molecular evolution of pathways involved in reproductive functions, since these organisms are generally regarded as "living fossils" and as the direct ancestors of tetrapods. Here, we report for the first time the characterization of >50 genes related to sex differentiation and gametogenesis in Latimeria menadoensis and Protopterus annectens. Although the expression profiles of most genes is consistent with the intermediate position of basal sarcopterygians between actinopterygian fish and tetrapods, their phylogenetic placement and presence/absence patterns often reveal a closer affinity to the tetrapod orthologs. On the other hand, particular genes, for example, the male gonad factor gsdf (Gonadal Soma-Derived Factor), provide examples of ancestral traits shared with actinopterygians, which disappeared in the tetrapod lineage.}, language = {en} } @phdthesis{Dejure2018, author = {Dejure, Francesca Romana}, title = {Investigation of the role of MYC as a stress responsive protein}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158587}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The transcription factor MYC is deregulated in over 70\% of all human tumors and, in its oncogenic form, plays a major role in the cancer metabolic reprogramming, promoting the uptake of nutrients in order to sustain the biosynthetic needs of cancer cells. The research presented in this work aimed to understand if MYC itself is regulated by nutrient availability, focusing on the two major fuels of cancer cells: glucose and glutamine. Initial observations showed that endogenous MYC protein levels strongly depend on the availability of glutamine, but not of glucose. Subsequent analysis highlighted that the mechanism which accounts for the glutamine-mediated regulation of MYC is dependent on the 3´-untranslated region (3´-UTR) of MYC. Enhanced glutamine utilization by tumors has been shown to be directly linked to MYC oncogenic activity and MYC-dependent apoptosis has been observed under glutamine starvation. Such effect has been described in experimental systems which are mainly based on the use of MYC transgenes that do not contain the 3´-UTR. It was observed in the present study that cells are able to survive under glutamine starvation, which leads to cell cycle arrest and not apoptosis, as previously reported. However, enforced expression of a MYC transgene, which lacks the 3´-UTR, strongly increases the percentage of apoptotic cells upon starvation. Evaluation of glutamine-derived metabolites allowed to identify adenosine nucleotides as the specific stimulus responsible for the glutamine-mediated regulation of MYC, in a 3´-UTR-dependent way. Finally, glutamine-dependent MYC-mediated effects on RNA Polymerase II (RNAPII) function were evaluated, since MYC is involved in different steps of global transcriptional regulation. A global loss of RNAPII recruitment at the transcriptional start site results upon glutamine withdrawal. Such effect is overcome by enforced MYC expression under the same condition. This study shows that the 3´UTR of MYC acts as metabolic sensor and that MYC globally regulates the RNAPII function according to the availability of glutamine. The observations presented in this work underline the importance of considering stress-induced mechanisms impinging on the 3´UTR of MYC.}, subject = {Myc}, language = {en} } @article{YankuBitmanLotanZoharetal.2018, author = {Yanku, Yifat and Bitman-Lotan, Eliya and Zohar, Yaniv and Kurant, Estee and Zilke, Norman and Eilers, Martin and Orian, Amir}, title = {Drosophila HUWE1 ubiquitin ligase regulates endoreplication and antagonizes JNK signaling during salivary gland development}, series = {Cells}, volume = {7}, journal = {Cells}, number = {10}, issn = {2073-4409}, doi = {10.3390/cells7100151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197630}, pages = {151}, year = {2018}, abstract = {The HECT-type ubiquitin ligase HECT, UBA and WWE Domain Containing 1, (HUWE1) regulates key cancer-related pathways, including the Myc oncogene. It affects cell proliferation, stress and immune signaling, mitochondria homeostasis, and cell death. HUWE1 is evolutionarily conserved from Caenorhabditis elegance to Drosophila melanogaster and Humans. Here, we report that the Drosophila ortholog, dHUWE1 (CG8184), is an essential gene whose loss results in embryonic lethality and whose tissue-specific disruption establishes its regulatory role in larval salivary gland development. dHUWE1 is essential for endoreplication of salivary gland cells and its knockdown results in the inability of these cells to replicate DNA. Remarkably, dHUWE1 is a survival factor that prevents premature activation of JNK signaling, thus preventing the disintegration of the salivary gland, which occurs physiologically during pupal stages. This function of dHUWE1 is general, as its inhibitory effect is observed also during eye development and at the organismal level. Epistatic studies revealed that the loss of dHUWE1 is compensated by dMyc proeitn expression or the loss of dmP53. dHUWE1 is therefore a conserved survival factor that regulates organ formation during Drosophila development.}, language = {en} } @article{KaluzaWallaceHeardetal.2018, author = {Kaluza, Benjamin F. and Wallace, Helen M. and Heard, Tim A. and Minden, Vanessa and Klein, Alexandra and Leonhardt, Sara D.}, title = {Social bees are fitter in more biodiverse environments}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {12353}, doi = {10.1038/s41598-018-30126-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177231}, year = {2018}, abstract = {Bee population declines are often linked to human impacts, especially habitat and biodiversity loss, but empirical evidence is lacking. To clarify the link between biodiversity loss and bee decline, we examined how floral diversity affects (reproductive) fitness and population growth of a social stingless bee. For the first time, we related available resource diversity and abundance to resource (quality and quantity) intake and colony reproduction, over more than two years. Our results reveal plant diversity as key driver of bee fitness. Social bee colonies were fitter and their populations grew faster in more florally diverse environments due to a continuous supply of food resources. Colonies responded to high plant diversity with increased resource intake and colony food stores. Our findings thus point to biodiversity loss as main reason for the observed bee decline.}, language = {en} } @article{PaulsBlechschmidtFrantzmannetal.2018, author = {Pauls, Dennis and Blechschmidt, Christine and Frantzmann, Felix and el Jundi, Basil and Selcho, Mareike}, title = {A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {15314}, doi = {10.1038/s41598-018-33686-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177412}, year = {2018}, abstract = {The modulation of an animal's behavior through external sensory stimuli, previous experience and its internal state is crucial to survive in a constantly changing environment. In most insects, octopamine (OA) and its precursor tyramine (TA) modulate a variety of physiological processes and behaviors by shifting the organism from a relaxed or dormant condition to a responsive, excited and alerted state. Even though OA/TA neurons of the central brain are described on single cell level in Drosophila melanogaster, the periphery was largely omitted from anatomical studies. Given that OA/TA is involved in behaviors like feeding, flying and locomotion, which highly depend on a variety of peripheral organs, it is necessary to study the peripheral connections of these neurons to get a complete picture of the OA/TA circuitry. We here describe the anatomy of this aminergic system in relation to peripheral tissues of the entire fly. OA/TA neurons arborize onto skeletal muscles all over the body and innervate reproductive organs, the heart, the corpora allata, and sensory organs in the antennae, legs, wings and halteres underlining their relevance in modulating complex behaviors.}, language = {en} } @article{MallLarsenMartin2018, author = {Mall, David and Larsen, Ashley E. and Martin, Emily A.}, title = {Investigating the (mis)match between natural pest control knowledge and the intensity of pesticide use}, series = {Insects}, volume = {9}, journal = {Insects}, number = {1}, doi = {10.3390/insects9010002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158977}, pages = {2}, year = {2018}, abstract = {Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture.}, language = {en} } @article{BoetzlRiesSchneideretal.2018, author = {Boetzl, Fabian A. and Ries, Elena and Schneider, Gudrun and Krauss, Jochen}, title = {It's a matter of design - how pitfall trap design affects trap samples and possible predictions}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, number = {e5078}, doi = {10.7717/peerj.5078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176870}, year = {2018}, abstract = {Background: Pitfall traps are commonly used to assess ground dwelling arthropod communities. The effects of different pitfall trap designs on the trapping outcome are poorly investigated however they might affect conclusions drawn from pitfall trap data greatly. Methods: We tested four pitfall trap types which have been used in previous studies for their effectiveness: a simple type, a faster exchangeable type with an extended plastic rim plate and two types with guidance barriers (V- and X-shaped). About 20 traps were active for 10 weeks and emptied biweekly resulting in 100 trap samples. Results: Pitfall traps with guidance barriers were up to five times more effective than simple pitfall traps and trap samples resulted in more similar assemblage approximations. Pitfall traps with extended plastic rim plates did not only perform poorly but also resulted in distinct carabid assemblages with less individuals of small species and a larger variation. Discussion: Due to the obvious trait filtering and resulting altered assemblages, we suggest not to use pitfall traps with extended plastic rim plates. In comprehensive biodiversity inventories, a smaller number of pitfall traps with guidance barriers and a larger number of spatial replicates is of advantage, while due to comparability reasons, the use of simple pitfall traps will be recommended in most other cases.}, language = {en} } @article{FujiwaraHermannLuiblKatsuraetal.2018, author = {Fujiwara, Yuri and Hermann-Luibl, Christiane and Katsura, Maki and Sekiguchi, Manabu and Ida, Takanori and Helfrich-F{\"o}rster, Charlotte and Yoshii, Taishi}, title = {The CCHamide1 Neuropeptide Expressed in the Anterior Dorsal Neuron 1 Conveys a Circadian Signal to the Ventral Lateral Neurons in Drosophila melanogaster}, series = {Frontiers in Physiology}, volume = {09}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195940}, year = {2018}, abstract = {The fruit fly Drosophila melanogaster possesses approximately 150 brain clock neurons that control circadian behavioral rhythms. Even though individual clock neurons have self-sustaining oscillators, they interact and synchronize with each other through a network. However, little is known regarding the factors responsible for these network interactions. In this study, we investigated the role of CCHamide1 (CCHa1), a neuropeptide expressed in the anterior dorsal neuron 1 (DN1a), in intercellular communication of the clock neurons. We observed that CCHa1 connects the DN1a clock neurons to the ventral lateral clock neurons (LNv) via the CCHa1 receptor, which is a homolog of the gastrin-releasing peptide receptor playing a role in circadian intercellular communications in mammals. CCHa1 knockout or knockdown flies have a generally low activity level with a special reduction of morning activity. In addition, they exhibit advanced morning activity under light-dark cycles and delayed activity under constant dark conditions, which correlates with an advance/delay of PAR domain Protein 1 (PDP1) oscillations in the small-LNv (s-LNv) neurons that control morning activity. The terminals of the s-LNv neurons show rather high levels of Pigment-dispersing factor (PDF) in the evening, when PDF is low in control flies, suggesting that the knockdown of CCHa1 leads to increased PDF release; PDF signals the other clock neurons and evidently increases the amplitude of their PDP1 cycling. A previous study showed that high-amplitude PDP1 cycling increases the siesta of the flies, and indeed, CCHa1 knockout or knockdown flies exhibit a longer siesta than control flies. The DN1a neurons are known to be receptive to PDF signaling from the s-LNv neurons; thus, our results suggest that the DN1a and s-LNv clock neurons are reciprocally coupled via the neuropeptides CCHa1 and PDF, and this interaction fine-tunes the timing of activity and sleep.}, language = {en} } @article{KruegerEngstler2018, author = {Kr{\"u}ger, Timothy and Engstler, Markus}, title = {The fantastic voyage of the trypanosome: a protean micromachine perfected during 500 million years of engineering}, series = {Micromachines}, volume = {9}, journal = {Micromachines}, number = {2}, doi = {10.3390/mi9020063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175944}, pages = {63}, year = {2018}, abstract = {The human body is constantly attacked by pathogens. Various lines of defence have evolved, among which the immune system is principal. In contrast to most pathogens, the African trypanosomes thrive freely in the blood circulation, where they escape immune destruction by antigenic variation and incessant motility. These unicellular parasites are flagellate microswimmers that also withstand the harsh mechanical forces prevailing in the bloodstream. They undergo complex developmental cycles in the bloodstream and organs of the mammalian host, as well as the disease-transmitting tsetse fly. Each life cycle stage has been shaped by evolution for manoeuvring in distinct microenvironments. Here, we introduce trypanosomes as blueprints for nature-inspired design of trypanobots, micromachines that, in the future, could explore the human body without affecting its physiology. We review cell biological and biophysical aspects of trypanosome motion. While this could provide a basis for the engineering of microbots, their actuation and control still appear more like fiction than science. Here, we discuss potentials and challenges of trypanosome-inspired microswimmer robots.}, language = {en} }