@article{PoppSchmittBoehrerLangeretal.2021, author = {Popp, Sandy and Schmitt-B{\"o}hrer, Angelika and Langer, Simon and Hofmann, Ulrich and Hommers, Leif and Schuh, Kai and Frantz, Stefan and Lesch, Klaus-Peter and Frey, Anna}, title = {5-HTT Deficiency in Male Mice Affects Healing and Behavior after Myocardial Infarction}, series = {Journal of Clinical Medicine}, volume = {10}, journal = {Journal of Clinical Medicine}, number = {14}, issn = {2077-0383}, doi = {10.3390/jcm10143104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242739}, year = {2021}, abstract = {Anxiety disorders and depression are common comorbidities in cardiac patients. Mice lacking the serotonin transporter (5-HTT) exhibit increased anxiety-like behavior. However, the role of 5-HTT deficiency on cardiac aging, and on healing and remodeling processes after myocardial infarction (MI), remains unclear. Cardiological evaluation of experimentally na{\"i}ve male mice revealed a mild cardiac dysfunction in ≥4-month-old 5-HTT knockout (-/-) animals. Following induction of chronic cardiac dysfunction (CCD) by MI vs. sham operation 5-HTT-/- mice with infarct sizes >30\% experienced 100\% mortality, while 50\% of 5-HTT+/- and 37\% of 5-HTT+/+ animals with large MI survived the 8-week observation period. Surviving (sham and MI < 30\%) 5-HTT-/- mutants displayed reduced exploratory activity and increased anxiety-like behavior in different approach-avoidance tasks. However, CCD failed to provoke a depressive-like behavioral response in either 5-Htt genotype. Mechanistic analyses were performed on mice 3 days post-MI. Electrocardiography, histology and FACS of inflammatory cells revealed no abnormalities. However, gene expression of inflammation-related cytokines (TGF-β, TNF-α, IL-6) and MMP-2, a protein involved in the breakdown of extracellular matrix, was significantly increased in 5-HTT-/- mice after MI. This study shows that 5-HTT deficiency leads to age-dependent cardiac dysfunction and disrupted early healing after MI probably due to alterations of inflammatory processes in mice.}, language = {en} } @article{FrantzKlaiberBabaetal.2013, author = {Frantz, Stefan and Klaiber, Michael and Baba, Hideo A. and Oberwinkler, Heinz and V{\"o}lker, Katharina and Gaßner, Birgit and Bayer, Barbara and Abeßer, Marco and Schuh, Kai and Feil, Robert and Hofmann, Franz and Kuhn, Michaela}, title = {Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I}, series = {European Heart Journal}, volume = {34}, journal = {European Heart Journal}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134693}, pages = {1233-1244}, year = {2013}, abstract = {Aims: Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results: To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the \([Ca^{2+}]_i\)-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte \(Ca^{2+}_i\) homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, \(Ca^{2+}_i\)-handling, and contractility via cGKI. Conclusion: These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte \(Ca^{2+}_i\) handling and contractility.}, language = {en} }