@phdthesis{Rudolf2013, author = {Rudolf, Ronald}, title = {Transcriptional Regulation of and by NFATc1 in Lymphocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The transcription factor NFATc1 has been shown to regulate the activation and differentiation of T-cells and B-cells, of DCs and megakaryocytes. Dysregulation of NFAT signaling was shown to be associated with the generation of autoimmune diseases, malignant transformation and the development of cancer [71]. The primary goal of this work was to gain insights on Nfatc1 induction and regulation in lymphocytes and to find new direct NFATc1 target genes. Three new BAC -transgenic reporter mouse strains (tgNfatc1/Egfp, tgNfatc1/DE1 and tgNfatc1/DE2) were applied to analyze Nfatc1 induction and regulation in primary murine B- and T-cells. As a result, we were able to show the persistent requirement of immunoreceptor-signaling for constant Nfatc1 induction, particularly, for NFATc1/αA expression. Furthermore, we showed that NF-κB inducing agents, such as LPS, CpG or CD40 receptor engagement, in combination with primary receptor-signals, positively contributed to Nfact1 induction in B-cells [137]. We sought to establish a new system which could help to identify direct NFATc1 target genes by means of ChIP and NGS in genom-wide approaches. We were able to successfully generate a new BAC-transgene encoding a biotinylatable short isoform of NFATc1, which is currently injected into mice oocyte at the TFM in Mainz. In addition, in vivo biotinylatable NFATc1-isoforms were cloned and stably expressed in the murine B-cell lymphoma line WEHI-231. The successful use of these cells stably overexpressing either the short NFATc1/αA or the long NFATc1/βC isoform along with the bacterial BirA biotin ligase was confirmed by intracellular stainings, FACS analysis, confocal microscopy and protein IP. By NGS, we detected 2185 genes which are specifically controlled by NFATc1/αA, and 1306 genes which are exclusively controlled by NFATc1/βC. This shows that the Nfatc1 locus encodes "two genes" which exhibit alternate, in part opposite functions. Studies on the induction of apoptosis and cell-death revealed opposed roles for the highly inducible short isoform NFATc1/αA and the constantly expressed long isoform NFATc1/βC. These findings were confirmed by whole transcriptome-sequencing performed with cells overexpressing NFATc1/αA and NFATc1/βC. Several thousand genes were found to be significantly altered in their expression profile, preferentially genes involved in apoptosis and PCD for NFATc1/βC or genes involved in transcriptional regulation and cell-cycle processes for NFATc1/αA. In addition we were able to perform ChIP-seq for NFATc1/αA and NFATc1/βC in an ab-independent approach. We found potential new target-sites, but further studies will have to address this ambitious goal in the future. In individual ChIP assays, we showed direct binding of NFATc1/αA and NFATc1/βC to the Prdm1 and Aicda promoter regions which are individually controlled by the NFATc1 isoforms.}, subject = {Lymphozyt}, language = {en} } @phdthesis{Na2005, author = {Na, Shin-Young}, title = {PKB/Akt : a critical regulator of lymphocyte, development and function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13755}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Protein kinase B (PKB), a serine threonine kinase, is highly involved in the regulation of cellular proliferation and survival. To characterize PKB's function in lymphocyte development and activation, transgenic (tg) mice that express a membrane targeted constitutively active form of PKBa (myr PKB) in T and B cells were analysed. Thymocytes from myr PKB tg mice showed enhanced proliferation after T cell receptor (TCR) engagement compared to wild type (wt) mice. Astonishingly, myr PKB tg thymocytes were capable to proliferate in response to PMA only and were also less sensitive to inhibition by the calcineurin inhibitors CsA or FK506, which indicates the proliferative response of myr PKB tg T cells is relatively independent of calcium mobilisation and calcineurin activity. In addition, when TCR signalling was inhibited by the MEKinase inhibitor PD98059 or the Srckinase inhibitor PP1 myr PKB tg thymocytes again were more resistant to inhibition. Western blot analysis revealed myr PKB enhances activation of the kinases Lck, Raf and Erk after TCR/CD3 stimulation. Thus, myr PKB renders proliferative responses of thymocytes more sensitive to TCR signals by positive regulation of the Lck-Raf-MEK-Erk signalling pathway. Studies on the cellular location of the tg protein showed myr PKB is located in membrane socalled "lipid rafts". Furthermore, we found that after TCR/CD3 ligation endogenous cytoplasmic PKB moves into "lipid rafts", which highlights PKB as a crucial mediator of TCR proximal signalling events. Analysing three different TCR tg model systems for positive and negative selection of immature precursors in the thymus, we found myr PKB promotes positive selection of CD4+ but not CD8+ T cells. This most likely results from PKB's positive cross-talk on Lck-Raf-Erk signalling, which is known to influence thymocyte selection and CD4/CD8-lineage choice. Furthermore, myr PKB enhances phosphorylation of glycogen synthase kinase 3 (GSK3), a negative regulator of the transcription factor NFAT (nuclear factor of activated T cells) and T cell activation, and of the adapter protein c-Cbl. Concerning negative selection, myr PKB enhanced (OT1 mice), reduced (HY mice) or had no influence (OT2 mice) on negative selection. Thus, myr PKB's effect on negative selection strongly depends on the model system analysed and this most likely results from differences in TCR affinity/avidity and TCR specificity for MHC. 106 Peripheral CD4+ T cells from myr PKB tg mice showed enhanced production of both Th1 and Th2 cytokines. Furthermore, after TCR/CD3 stimulation in the presence of TGF-b1, wt CD4+ T cells showed a drastic inhibition of proliferation, whereas myr PKB tg CD4+ T cells proliferated even better, i.e. they were resistant to the inhibitory TGF-b1 signals. Expression of myr PKB in B cells leads to reduced Ca2+ flux and proliferation after BCR stimulation, but activation of Lyn, SLP-65, c-Cbl and GSK-3 were enhanced. When we analysed B cell subsets in myr PKB tg mice, a decrease in immature and mature B cells became obvious, whereas cell numbers for marginal zone (MZ) B cells were normal. In aged myr PKB tg mice we detected a very strong reduction of pro/pre and immature B cell populations in the bone marrow, indicating PKB is very important for maintenance of B cell development. Furthermore, myr PKB also lead to a strong reduction of peritoneal B-1 cells. However, expression of NFATc1, which is required for B-1 cell development, was comparable between wt and myr PKB tg B-1 cells. To analyse the effect of myr PKB on immunoglobulin production, mice were immunized with thymus dependent (TD) and independent (TI) antigens. In both cases, B cell responses were strongly elevated in myr PKB tg mice. Finally, RT-PCR analyses of in vitro expanded B cells revealed increased Blimp-1 and Notch3 expression in myr PKB tg B cells, which might be primary candidates involved in their enhanced effector function. In summary, this study clearly shows an important cross-talk between PKB and various critical signalling molecules downstream of the TCR and BCR. Thereby active PKB modulates and regulates the thresholds for thymocyte selection and T cell activation as well as for B cell development and function.}, subject = {Proteinkinase B}, language = {en} } @article{SchneiderSchauliesSchimplWecker1987, author = {Schneider-Schaulies, J{\"u}rgen and Schimpl, A. and Wecker, E.}, title = {Kinetics of cellular oncogene expression in mouse lymphocytes II. Regulation of c-fos and c-myc gene expression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54823}, year = {1987}, abstract = {Newly isolated lymphocytes from mousespleensexpress the c-fos oncogene even in the absence of mitogen with maximal mRNA levels 60 min post preparation of single cell suspension, whereas c-myc mRNA Ievels increase only after mitogenic Stimulation with maximal mRNA Ievels 6 h post Stimulation. The half-lives of c-fos mRNA are generally very short; they increase from 14 min (after 30 min of culture) to 70 min (after 2 h of culture). The half-lives of c-myc mRNA decrease from 50 min (at 2 and 6 h post stimulation with concanavalin A) to 12 min (at 48 h post stimulation). The c-fos gene transcription is already tumed on in time-0 lymphocytes 10 min after disruption of the organ structure of the spleens and is down-regulated after 2 h and later. In nuclear run-on experiments with nonstimulated lymphocytes there is already significant transcription of the first exon of c-myc, but almost no elongation of the transcript to exon 2 and 3. In concanavalin A-treated lymphocytes elongation is stimulated about 5-fold within 6 h and returns to background levels at 48 h post Stimulation. · The nuclear run-on analyses of nonactivated lymphocytes showed a signal for RNA complementary to c-myc mRNA detected with a probe specific for the exon 1/intron 1 boundary of c-myc, which disappeared with increasing time of concanavalin A Stimulation. This anti-sense transcription may play a role in regulating the elongation of cmyc transcripts.}, subject = {Lymphozyt}, language = {en} } @article{SchneiderSchauliesKnauerHuenigetal.1984, author = {Schneider-Schaulies, J{\"u}rgen and Knauer, R. and H{\"u}nig, T. and Schimpl, A. and Wecker, E.}, title = {Induction of c-onc expression in polyclonally activated mouse lymphocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54784}, year = {1984}, abstract = {No abstract available}, subject = {Lymphozyt}, language = {en} } @article{SchneiderSchauliesKnauerSchimpletal.1987, author = {Schneider-Schaulies, J{\"u}rgen and Knauer, R. and Schimpl, A. and Wecker, E.}, title = {Cellular Oncogenes and lymphocyte activation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54836}, year = {1987}, abstract = {No abstract available}, subject = {Lymphozyt}, language = {en} }