@phdthesis{Kindeketa2014, author = {Kindeketa, William Joseph}, title = {Pollination in wild plant communities along altitudinal and land use gradients Mount Kilimanjaro, Tanzania}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {1. Pollination of sexually reproducing plants requires pollen transfer agents, which can be biotic, abiotic or a combination of biotic and abiotic agents. The dominance of one of pollination system in wild plant communities depends on climatic factors and/or degrees of anthropogenic influences, which have effects on pollinator diversity and pollination function. Anthropogenic activities and climate change are also considered as main causes of ongoing invasion of invasive species into wild and managed habitats which can bring up competition for pollinators with possible negative consequences for the reproduction of co-occurring native plant species. 2. The study aimed to determine pollination systems and pollination limitation of invasive and native plant communities in natural savannah between 870 - 1130 m and semi-natural (managed) grassland between 1300 - 1750 m above sea level; effects of flower density and pollinator abundance on seed production of cross-pollinated and self-pollinated plants; and relationships of bee abundance and the proportion of cross- pollinated plants at the southern slope of Mount Kilimanjaro, Tanzania. 3. Pollinator-exclusion, open pollination and supplemental hand-pollination treatments were applied to 27 plant species in savannah and grassland habitats. Flowers were counted in each clusters based upon their species. Pollinators were sampled by using pan traps. Information-theory-based multi-model averaging and generalized linear mixed effects models were used to identify and analyze the effects of flower density, pollinator abundance, pollination treatments and habitat types on seed production. Regression models were used to determine relationships of altitude with bee abundance, and with proportion of cross-pollinated plants. 4. My results show that mean seed numbers of native plants were significantly lower in pollinator-exclusion treatments than in open-pollination treatments, indicating their reliance on pollinators for reproductive success. In contrast, seed numbers of invasive plants were similar in pollinator-exclusion and open-pollination treatments, demonstrating an ability of reproduction without pollinators. Despite of higher levels of self-pollination in invasive plants, supplemental hand-pollination treatments revealed pollen limitation in grassland and marginally in savannah habitats. There were no significant difference in seed numbers between supplemental hand pollination and open pollination treatments of native plant communities in savannah and grassland, which indicates no pollination limitation in the studied ecological system for native communities. Besides, grassland plants produced comparatively more seeds than savannah plants, however seeds in grasslands were lighter than those of the savannah which may be due to nutrient limitation in grassland. 5. I found 12 cross-pollinated and 15 self-pollinated plants along altitudinal gradient after comparing seeds from pollinator-excluded and open-pollinated experiments. I also found that proportions of cross-pollinated plants and bee abundance simultaneously decreased with increasing altitude. All cross-pollinated plants were native and grew in savannah habitats, with an exception of one species. 6. Neither effects of focal flower density nor a significant interaction between focal flower densities and bee abundance for self-pollinated plants were observed. However, there were effects of focal flower densities and interactions of flower density with bee abundance for cross-pollinated plants. Non-focal flower density has no significant effects on seed production of cross-pollinated and self-pollinated plants. 7. The results show that native plants depend more on cross-pollination than invasive plants, despite of most native plants in managed habitat (grassland) rely on self-pollination for reproduction. The tendency of having more cross-pollinated plants in natural savannah which are in low altitude coincides with other finding that the cross-pollinated plants and bee abundance simultaneously decrease with increasing altitude. Therefore, our findings support the hypotheses that self-fertilization of flowering plants increases with increasing altitude, and pollinator limitation is most pronounced in managed or disturbed habitats. Despite of reduction of pollinators in grassland, only invasive plants experience pollen limitation, which may be due to poor integration with available pollinator networks. 8. I also found bee abundance and flower density are not the main pollination factors required by self-pollinated plants during reproduction. However, focal flower density, which influences pollinator diversity, is more applicable to cross-pollinated plants. Climate change and anthropogenic activities in natural habitats are factors that influence pollinator abundance and functioning, which lead to a shift of mating systems in plant communities so as to assure their reproduction.}, subject = {Best{\"a}ubungs{\"o}kologie}, language = {en} } @phdthesis{Hoiss2013, author = {Hoiß, Bernhard}, title = {Effects of climate change, extreme events and management on plants, pollinators and mutualistic interaction networks}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87919}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {I. Climate change comprises average temperatures rise, changes in the distribution of precipitation and an increased amount and intensity of extreme climatic events in the last decades. Considering these serious changes in the abiotic environment it seems obvious that ecosystems also change. Flora and fauna have to adapt to the fast changing conditions, migrate or go extinct. This might result in shifts in biodiversity, species composition, species interactions and in ecosystem functioning and services. Mountains play an important role in the research of these climate impacts. They are hotspots of biodiversity and can be used as powerful natural experiments as they provide, within short distances, the opportunity to research changes in the ecosystem induced by different climatic contexts. In this dissertation two approaches were pursued: i) surveys of biodiversity, trait dominance and assembly rules in communities depending on the climatic context and different management regimes were conducted (chapters II and III) and ii) the effects of experimental climate treatments on essential ecosystem features along the altitudinal gradient were assessed (chapters IV, V and VI). II. We studied the relative importance of management, an altitudinal climatic gradient and their interactions for plant species richness and the dominance of pollination types in 34 alpine grasslands. Species richness peaked at intermediate temperatures and was higher in grazed grasslands compared to non-managed grasslands. We found the climatic context and also management to influence the distribution and dominance structures of wind- and insect-pollinated plants. Our results indicate that extensive grazing maintains high plant diversity over the full subalpine gradient. Rising temperatures may cause an upward shift of the diversity peak of plants and may also result in changed species composition and adaptive potential of pollination types. III. On the same alpine grasslands we studied the impact of the climatic context along an altitudinal gradient on species richness and community assembly in bee communities. Species richness and abundance declined linearly with increasing altitude. Bee species were more closely related at high altitudes than at low altitudes. The proportion of social and ground-nesting species, as well as mean body size and altitudinal range of bees, increased with increasing altitude, whereas the mean geographic distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, while the relative importance of competition increases at low altitudes. We conclude that ongoing climate change poses a threat for alpine specialists with adaptations to cool environments but low competitive capacities. IV. We determined the impacts of short-term climate events on flower phenology and assessed whether those impacts differed between lower and higher altitudes. For that we simulated advanced and delayed snowmelt as well as drought events in a multi site experiment along an altitudinal gradient. Flower phenology was strongly affected by altitude, however, this effect declined through the season. The manipulative treatments caused only few changes in flowering phenology. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but altitude did not influence the effect of the other treatments. The length of flowering duration was not significantly influenced by treatments. Our data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps. V. Changes in the structure of plant-pollinator networks were assessed along an altitudinal gradient combined with the experimental simulation of potential consequences of climate change: extreme drought events, advanced and delayed snowmelt. We found a trend of decreasing specialisation and therefore increasing complexity in networks with increasing altitude. After advanced snowmelt or drought networks were more specialised especially at higher altitudes compared to control plots. Our results show that changes in the network structures after climate manipulations depend on the climatic context and reveal an increasing susceptibility of plant-pollinator networks with increasing altitude. VI. The aim of this study was to determine the combined effects of extreme climatic events and altitude on leaf CN (carbon to nitrogen) ratios and herbivory rates in different plant guilds. We found no overall effect of climate manipulations (extreme drought events, advanced and delayed snowmelt) on leaf CN ratios and herbivory rates. However, plant guilds differed in CN ratios and herbivory rates and responded differently to altitude. CN ratios of forbs (legume and non-legume) decreased with altitude, whereas CN ratios of grasses increased with altitude. Further, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Insect herbivory rates were driven by food plant quality. Contrasting altitudinal responses of forbs versus grasses give reason to expect changed dominance structures among plant guilds with ongoing climate change. VII. This dissertation contributes to the understanding of factors that determine the composition and biotic interactions of communities in different climates. The results presented indicate that warmer climates will not only change species richness but also the assembly-rules for plant and bee communities depending on the species' functional traits. Our investigations provide insights in the resilience of different ecosystem features and processes towards climate change and how this resilience depends on the environmental context. It seems that mutualistic interactions are more susceptible to short-term climate events than flowering phenology and antagonistic interactions such as herbivory. However, to draw more general conclusions more empirical data is needed.}, subject = {Klima{\"a}nderung}, language = {en} }