@phdthesis{Chari2009, author = {Chari, Ashwin}, title = {The Reaction Mechanism of Cellular U snRNP Assembly}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40804}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Macromolecular complexes, also termed molecular machines, facilitate a large spectrum of biological reactions and tasks crucial to the survival of cells. These complexes are composed of either protein only, or proteins bound to nucleic acids (DNA or RNA). Prominent examples for each class are the proteosome, the nucleosome and the ribosome. How such units are assembled within the context of a living cell is a central question in molecular biology. Earlier studies had indicated that even very large complexes such as ribosomes could be reconstituted from purified constituents in vitro. The structural information required for the formation of macromolecular complexes, hence, lies within the subunits itself and, thus, allow for self- assembly. However, increasing evidence suggests that in vivo many macromolecular complexes do not form spontaneously but require assisting factors ("assembly chaperones") for their maturation. In this thesis the assembly of RNA-protein (RNP) complexes has been studied by a combination of biochemical and structural approaches. A resourceful model system to study this process is the biogenesis pathway of the uridine-rich small nuclear ribonucleoproteins (U snRNPs) of the spliceosome. This molecular machine catalyzes pre-mRNA splicing, i.e. the removal of non-coding introns and the joining of coding exons to functional mRNA. The composition and architecture of U snRNPs is well defined, also, the nucleo-cytoplasmic transport events enabling the formation of these particles in vivo have been analyzed in some detail. Furthermore, recent studies suggest that the formation of U snRNPs in vivo is mediated by an elaborate assembly machinery consisting of protein arginine methyltransferase (PRMT5)- and survival motor neuron (SMN)-complexes. The elucidation of the reaction mechanism of cellular U snRNP assembly would serve as a paradigm for our understanding of how RNA-protein complexes are formed in the cellular environment. The following key findings were obtained as part of this study: 1) Efforts were made to establish a full inventory of the subunits of the SMN-complex. This was achieved by the biochemical definition and characterization of an atypical component of this complex, the unrip protein. This protein is associated with the SMN-complex exclusively in the cytoplasm and influences its subcellular localization. 2) With a full inventory of the components in hand, the architecture of the SMN-complex was defined on the basis of an interaction map of all subunits. This study elucidated that the proteins SMN, Gemin7 and Gemin8 form a backbone, onto which the remaining subunits adhere in a modular manner. 3) The two studies mentioned above formed the basis to elucidate the reaction mechanism of cellular U snRNP assembly. Initially, an early phase in the SMN-assisted formation of U snRNPs was analyzed. Two subunits of the U7 snRNP (LSm10 and 11) were found to interact with the PRMT5-complex, without being methylated. This report suggests that the stimulatory role of the PRMT5-complex is independent of its methylation activity. 4) Key reaction intermediates in U snRNP assembly were found and characterized by a combination of biochemistry and structural studies. Initially, a precursor to U snRNPs with a sedimentation coefficient of 6S is formed by the pICln subunit of the PRMT5-complex and Sm proteins. This intermediate was shown to constitute a kinetic trap in the U snRNP assembly reaction. Progression towards the assembled U snRNP depends on the activity of the SMN-complex, which acts as a catalyst. The formation of U snRNPs is shown to be structurally similar to the way clamps are deposited onto DNA to tether poorly processive polymerases. 5) The human SMN-complex is composed of several subunits. However, it is unknown whether all subunits of this entity are essential for U snRNP assembly. A combination of bioinformatics and biochemistry was applied to tackle this question. By mining databases containing whole-genome assemblies, the SMN-Gemin2 heterodimer is recognized as the most ancestral form of the SMN-complex. Biochemical purification of the Drosophila melanogaster SMN-complex reveals that this complex is composed of the same two subunits. Furthermore, evidence is provided that the SMN-Gemin2 heterodimer is necessary and sufficient to promote faithful U snRNP assembly. Future studies will adress further details in the reaction mechanism of cellular U snRNP assembly. The results obtained in this thesis suggest that the SMN and Gemin2 subunits are sufficient to promote U snRNP formation. What then is the function of the remaining subunits of the SMN-complex? The reconstitution schemes established in this thesis will be instrumental to address this question. Furthermore, additional mechanistic insights into the U snRNP assembly reaction will require the elucidation of structures of the assembly machinery trapped at various states. The prerequisite for these structural studies, the capability to generate homogenous complexes in sufficient amounts, has been accomplished in this thesis.}, subject = {Small nuclear RNP}, language = {en} } @phdthesis{Neuenkirchen2012, author = {Neuenkirchen, Nils}, title = {An in vitro system for the biogenesis of small nuclear ribonucleoprotein particles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71300}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Most protein-encoding genes in Eukaryotes are separated into alternating coding and non-coding sequences (exons and introns). Following the transcription of the DNA into pre-messenger RNA (pre-mRNA) in the nucleus, a macromolecular complex termed spliceosome removes the introns and joins the exons to generate mature mRNA that is exported to the cytoplasm. There, it can be interpreted by ribosomes to generate proteins. The spliceosome consists of five small nuclear ribonucleic acids (snRNAs) and more than 150 proteins. Integral components of this complex are RNA-protein particles (RNPs) composed of one or two snRNAs, seven common (Sm) and a various number of snRNP-specific proteins. The Sm proteins form a ring-structure around a conserved site of the snRNA called Sm site. In vitro, Sm proteins (B/B', D1, D2, D3, E, F, G) and snRNA readily assemble to form snRNPs. In the context of the cell, however, two macromolecular trans-acting factors, the PRMT5 (protein arginine methyltransferases type 5) and the SMN (survival motor neuron) complex, are needed to enable this process. Initially, the Sm proteins in the form of heterooligomers D1/D2, D3/B and F/E/G are sequestered by the type II methyltransferase PRMT5. pICln, a component of the PRMT5 complex, readily interacts with Sm proteins to form two distinct complexes. Whereas the first one comprises pICln and D3/B the second one forms a ring consisting of pICln, D1/D2 and F/E/G (6S). It has been found that pICln prevents the premature interaction of snRNAs with the Sm proteins in these complexes and thus functions as an assembly chaperone imposing a kinetic trap upon the further assembly of snRNPs. PRMT5 catalyzes the symmetrical dimethylation of arginine residues in B/B', D1 and D3 increasing their affinity towards the SMN complex. Finally, the SMN complex interacts with the pICln-Sm protein complexes, expels pICln and mediates snRNP assembly in an ATP-dependent reaction. So far, only little is known about the action of PRMT5 in the early phase of snRNP assembly and especially how the 6S complex is formed. Studies of this have so far been hampered by the unavailability of soluble and biologically active PRMT5 enzyme. The composition of the SMN complex and possible functions of individual subunits have been elucidated or hypothesized in recent years. Still, the exact mechanism of the entire machinery forming snRNPs is poorly understood. In vivo, reduced production of functional SMN protein results in the neurodegenerative disease spinal muscular atrophy (SMA). How specific SMN mutations that have been found in SMA patients cause the disease remains elusive, yet, are likely to interfere with either SMN complex stability or snRNP assembly. The aim of this work was to establish an in vitro system to recapitulate the cytoplasmic assembly of snRNPs. This was enabled by the recombinant production of all PRMT5 and SMN complex components as well as Sm proteins in a combination of bacterial and insect cell expression systems. Co-expression of human PRMT5 and its direct interaction partner WD45 (WD-repeat domain 45) in Sf21 (Spodoptera frugiperda 21) insect cells resulted for the first time in soluble and biologically active enzyme. Recombinant PRMT5/WD45 formed complexes with Sm protein heterooligomers as well as pICln-Sm protein complexes but not with F/E/G alone. Also, the enzyme exhibited a type II methyltransferase activity catalyzing the mono- (MMA) and symmetrical dimethylation (sDMA) of Sm proteins B, D1 and D3. Two experimental setups were devised to quantitatively analyze the overall methylation of substrates as well as to identify the type and relative abundance of specific methylation types. Methylation of Sm proteins followed Michaelis-Menten kinetics. Complex reconstitutions and competition of the methylation reaction indicate that 6S is formed in a step-wise manner on the PRMT5 complex. The analysis of the methylation type could be applied to deduce a model of sequential MMA and sDMA formation. It was found that large Sm protein substrate concentrations favored monomethylation. Following a distributive mechanism this leads to the conclusion that PRMT5 most likely confers partial methylation of several different substrate proteins instead of processing a single substrate iteratively until it is completely dimethylated. Finally, the human SMN complex was reconstituted from recombinant sources and was shown to be active in snRNP formation. The introduction of a modified SMN protein carrying a mutation (E134K) present in spinal muscular atrophy (SMA) proved that mutated complexes can be generated in vitro and that these might be applied to elucidate the molecular etiology of this devastating disease.}, subject = {Biogenese}, language = {en} } @phdthesis{Paknia2013, author = {Paknia, Elham}, title = {Identification of a quality control check-point for the assembly of mRNA-processing snRNPs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98744}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {An essential step in eukaryotic gene expression is splicing, i.e. the excision of non-coding sequences from pre-mRNA and the ligation of coding-sequences. This reaction is carried out by the spliceosome, which is a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs) and a large number of proteins. Spliceosomal snRNPs are composed of one snRNA (or two in case of U4/6 snRNPs), seven common Sm proteins (SmD1, D2, D3, B, E, F, G) and several particle-specific proteins. The seven Sm proteins form a ring shaped structure on the snRNA, termed Sm core domain that forms a structural framework of all spliceosomal snRNPs. In the toroidal Sm core domain, the individual Sm proteins are arranged in the sequence SmE-SmG-SmD3-SmB- SmD1-SmD2-SmF from the first to the seventh nucleotide of the Sm site, respectively. The individual positions of Sm proteins in the Sm core domain are not interchangeable. snRNPs are formed in vivo in a step-wise process, which starts with the export of newly transcribed snRNA to the cytoplasm. Within this compartment, Sm proteins are synthesized and subsequently transferred onto the snRNA. Upon formation of the Sm core and further modifications of snRNA, the snRNP is imported into the nucleus to join the spliceosome. Prior to assembly into snRNPs, Sm proteins exist as specific hetero-oligomers in the cytoplasm. The association of these proteins with snRNA occurs spontaneously in vitro but requires the assistance of two major units, PRMT5- and SMN- complexes, in vivo. The early phase of assembly is critically influenced by the assembly chaperone pICln. This protein pre-organizes Sm proteins to functional building blocks and enables their recruitment onto the PRMT5 complex for methylation. Sm proteins are subsequently released from the PRMT5 complex as pICln bound entities and transferred onto the SMN-complex. The SMN complex then liberates the Sm proteins from the pICln-induced kinetic trap and allows their transfer onto the snRNA. Although the principal roles of SMN- and PRMT5 complexes in the assembly of snRNPs have been established, it is still not clear how newly translated Sm proteins are guided into the assembly line. In this thesis, I have uncovered a new facet of pICln function in the assembly of snRNPs. I have shown that newly synthesized Sm proteins are retained at the ribosome upon termination of translation. Their release is facilitated by pICln, which interacts with the cognate Sm protein hetero-oligomers at their site of synthesis on the ribosome and recruits them into the assembly pathway. Additionally, I have been able to show that the early engagement of pICln with the Sm proteins ensures the flawless oligomerization of Sm proteins and prevents any non-chaperoned release and diffusion of Sm proteins in the cytoplasm. In a second project, I have studied the mechanism of U7 snRNP assembly. This particle is a major component of the 3' end processing machinery of replication dependent histone mRNAs. A biochemical hallmark of U7 is its unique Sm core in which the two canonical Sm proteins D1 and D2 are replaced by so-called "like Sm proteins". The key question I addressed in my thesis was, how this "alternative" Sm core is assembled onto U7 snRNA. I have provided experimental evidence that the assembly route of U7 snRNPs and spliceosomal snRNPs are remarkably similar: The assembly of both particles depends on the same assembly factors and the mechanistic details are similar. It appears that formation of the U7- or spliceosomal- core specific 6S complex is the decisive step in assembly.}, subject = {Small nuclear RNP}, language = {en} }