@article{SteinmetzgerBaeuerleinHoebartner2020, author = {Steinmetzger, Christian and B{\"a}uerlein, Carmen and H{\"o}bartner, Claudia}, title = {Supramolecular fluorescence resonance energy transfer in nucleobase-modified fluorogenic RNA aptamers}, series = {Angewandte Chemie, International Edition}, volume = {59}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201916707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203084}, pages = {6760-6764}, year = {2020}, abstract = {RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence-based strategies reveal information on structure and dynamics of RNA aptamers. Here we report the incorporation of the universal emissive nucleobase analog 4-cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to bound ligands DMHBI+ or DMHBO+. The photophysical properties of the new nucleobase-ligand-FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET-based readout of ligand binding. This strategy is generally suitable for binding site mapping and may also be applied for responsive aptamer devices.}, language = {en} } @article{SteinmetzgerBessiLenzetal.2019, author = {Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and H{\"o}bartner, Claudia}, title = {Structure-fluorescence activation relationships of a large Stokes shift fluorogenic RNA aptamer}, series = {Nucleic Acids Research}, journal = {Nucleic Acids Research}, doi = {10.1093/nar/gkz1084/5628921}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192340}, pages = {gkz1084}, year = {2019}, abstract = {The Chili RNA aptamer is a 52 nt long fluorogen-activating RNA aptamer (FLAP) that confers fluorescence to structurally diverse derivatives of fluorescent protein chromophores. A key feature of Chili is the formation of highly stable complexes with different ligands, which exhibit bright, highly Stokes-shifted fluorescence emission. In this work, we have analyzed the interactions between the Chili RNA and a family of conditionally fluorescent ligands using a variety of spectroscopic, calorimetric and biochemical techniques to reveal key structure - fluorescence activation relationships (SFARs). The ligands under investigation form two categories with emission maxima of ~540 nm or ~590 nm, respectively, and bind with affinities in the nanomolar to low-micromolar range. Isothermal titration calorimetry was used to elucidate the enthalpic and entropic contributions to binding affinity for a cationic ligand that is unique to the Chili aptamer. In addition to fluorescence activation, ligand binding was also observed by NMR spectroscopy, revealing characteristic signals for the formation of a G-quadruplex only upon ligand binding. These data shed light on the molecular features required and responsible for the large Stokes shift and the strong fluorescence enhancement of red and green emitting RNA-chromophore complexes.}, language = {en} } @article{ScheitlLangeHoebartner2020, author = {Scheitl, Carolin P. M. and Lange, Sandra and H{\"o}bartner, Claudia}, title = {New deoxyribozymes for the native ligation of RNA}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {16}, doi = {https://doi.org/10.3390/molecules25163650}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210405}, year = {2020}, abstract = {Deoxyribozymes (DNAzymes) are small, synthetic, single-stranded DNAs capable of catalysing chemical reactions, including RNA ligation. Herein, we report a novel class of RNA ligase deoxyribozymes that utilize 5'-adenylated RNA (5'-AppRNA) as the donor substrate, mimicking the activated intermediates of protein-catalyzed RNA ligation. Four new DNAzymes were identified by in vitro selection from an N40 random DNA library and were shown to catalyze the intermolecular linear RNA-RNA ligation via the formation of a native 3'-5'-phosphodiester linkage. The catalytic activity is distinct from previously described RNA-ligating deoxyribozymes. Kinetic analyses revealed the optimal incubation conditions for high ligation yields and demonstrated a broad RNA substrate scope. Together with the smooth synthetic accessibility of 5'-adenylated RNAs, the new DNA enzymes are promising tools for the protein-free synthesis of long RNAs, for example containing precious modified nucleotides or fluorescent labels for biochemical and biophysical investigations.}, language = {en} } @article{RonaldHoebartner2020, author = {Ronald, Micura and H{\"o}bartner, Claudia}, title = {Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes}, series = {Chemical Society Reviews}, journal = {Chemical Society Reviews}, edition = {Advance Article}, doi = {10.1039/D0CS00617C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212133}, year = {2020}, abstract = {This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.}, language = {en} } @article{OkudaLenzSeitzetal.2023, author = {Okuda, Takumi and Lenz, Ann-Kathrin and Seitz, Florian and Vogel, J{\"o}rg and H{\"o}bartner, Claudia}, title = {A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells}, series = {Nature Chemistry}, journal = {Nature Chemistry}, doi = {10.1038/s41557-023-01320-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-328762}, year = {2023}, abstract = {Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes.}, language = {en} } @article{NeitzBessiKachleretal.2022, author = {Neitz, Hermann and Bessi, Irene and Kachler, Valentin and Michel, Manuela and H{\"o}bartner, Claudia}, title = {Tailored tolane-perfluorotolane assembly as supramolecular base pair replacement in DNA}, series = {Angewandte Chemie International Edition}, volume = {62}, journal = {Angewandte Chemie International Edition}, number = {1}, doi = {10.1002/anie.202214456}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312575}, year = {2022}, abstract = {Arene-fluoroarene interactions offer outstanding possibilities for engineering of supramolecular systems, including nucleic acids. Here, we implement the tolane-perfluorotolane interaction as base pair replacement in DNA. Tolane (THH) and perfluorotolane (TFF) moieties were connected to acyclic backbone units, comprising glycol nucleic acid (GNA) or butyl nucleic acid (BuNA) building blocks, that were incorporated via phosphoramidite chemistry at opposite positions in a DNA duplex. Thermodynamic analyses by UV thermal melting revealed a compelling stabilization by THH/TFF heteropairs only when connected to the BuNA backbone, but not with the shorter GNA linker. Detailed NMR studies confirmed the preference of the BuNA backbone for enhanced polar π-stacking. This work defines how orthogonal supramolecular interactions can be tailored by small constitutional changes in the DNA backbone, and it inspires future studies of arene-fluoroarene-programmed assembly of DNA.}, language = {en} } @article{MieczkowskiSteinmetzgerBessietal.2021, author = {Mieczkowski, Mateusz and Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and Pena, Vladimir and H{\"o}bartner, Claudia}, title = {Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-23932-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254527}, pages = {3549}, year = {2021}, abstract = {Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer.}, language = {en} } @article{MaghamiDeyLenzetal.2020, author = {Maghami, Mohammad Ghaem and Dey, Surjendu and Lenz, Ann-Kathrin and H{\"o}bartner, Claudia}, title = {Repurpsing Antiviral Drugs for Orthogonal RNA-Catalyzed Labeling}, series = {Angewandte Chemie, International Edition}, volume = {59}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.202001300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205552}, pages = {9335-9339}, year = {2020}, abstract = {In vitro selected ribozymes are promising tools for site-specific labeling of RNA. Previously known nucleic acid catalysts attached fluorescently labeled adenosine or guanosine derivatives through 2',5'-branched phosphodiester bonds to the RNA of interest. Herein, we report new ribozymes that use orthogonal substrates, derived from the antiviral drug tenofovir, and attach bioorthogonal functional groups, as well as affinity handles and fluorescent reporter units through a hydrolytically more stable phosphonate ester linkage. The tenofovir transferase ribozymes were identified by in vitro selection and are orthogonal to nucleotide transferase ribozymes. As genetically encodable functional RNAs, these ribozymes may be developed for potential cellular applications. The orthogonal ribozymes addressed desired target sites in large RNAs in vitro, as shown by fluorescent labeling of E. coli 16S and 23S RNAs in total cellular RNA.}, language = {en} } @article{LiaqatStillerMicheletal.2020, author = {Liaqat, Anam and Stiller, Carina and Michel, Manuela and Sednev, Maksim V. and H{\"o}bartner, Claudia}, title = {N\(^6\)-Isopentenyladenosine in RNA Determines the Cleavage Site of Endonuclease Deoxyribozymes}, series = {Angewandte Chemie International Edition}, journal = {Angewandte Chemie International Edition}, edition = {Early View}, doi = {10.1002/ange.202006218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212121}, year = {2020}, abstract = {RNA-cleaving deoxyribozymes can serve as selective sensors and catalysts to examine the modification state of RNA. However, site-specific endonuclease deoxyribozymes that selectively cleave posttranscriptionally modified RNA are extremely rare and their specificity over unmodified RNA is low. In this study, we report that the native tRNA modification N\(^6\)-isopentenyladenosine (i\(^6\)A) strongly enhances the specificity and has the power to reconfigure the active site of an RNA-cleaving deoxyribozyme. Using in vitro selection, we identified a DNA enzyme that cleaves i\(^6\)A-modified RNA at least 2500-fold faster than unmodified RNA. Another deoxyribozyme shows unique and unprecedented behaviour by shifting its cleavage site in the presence of the i\(^6\)A RNA modification. Together with deoxyribozymes that are strongly inhibited by i\(^6\)A, these results highlight intricate ways of modulating the catalytic activity of DNA by posttranscriptional RNA modifications.}, language = {en} } @article{LiaqatSednevStilleretal.2021, author = {Liaqat, Anam and Sednev, Maksim V. and Stiller, Carina and H{\"o}bartner, Claudia}, title = {RNA-cleaving deoxyribozymes differentiate methylated cytidine isomers in RNA}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202106517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256519}, pages = {19058-19062}, year = {2021}, abstract = {Deoxyribozymes are emerging as modification-specific endonucleases for the analysis of epigenetic RNA modifications. Here, we report RNA-cleaving deoxyribozymes that differentially respond to the presence of natural methylated cytidines, 3-methylcytidine (m\(^3\)C), N\(^4\)-methylcytidine (m\(^4\)C), and 5-methylcytidine (m\(^5\)C), respectively. Using in vitro selection, we found several DNA catalysts, which are selectively activated by only one of the three cytidine isomers, and display 10- to 30-fold accelerated cleavage of their target m\(^3\)C-, m\(^4\)C- or m\(^5\)C-modified RNA. An additional deoxyribozyme is strongly inhibited by any of the three methylcytidines, but effectively cleaves unmodified RNA. The mXC-detecting deoxyribozymes are programmable for the interrogation of natural RNAs of interest, as demonstrated for human mitochondrial tRNAs containing known m\(^3\)C and m\(^5\)C sites. The results underline the potential of synthetic functional DNA to shape highly selective active sites.}, language = {en} }