@article{GomesWestermannSauerweinetal.2019, author = {Gomes, Sara F. Martins and Westermann, Alexander J. and Sauerwein, Till and Hertlein, Tobias and F{\"o}rstner, Konrad U. and Ohlsen, Knut and Metzger, Marco and Shusta, Eric V. and Kim, Brandon J. and Appelt-Menzel, Antje and Schubert-Unkmeir, Alexandra}, title = {Induced pluripotent stem cell-derived brain endothelial cells as a cellular model to study Neisseria meningitidis infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1181}, doi = {10.3389/fmicb.2019.01181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201562}, year = {2019}, abstract = {Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs.}, language = {en} } @article{EndresJungblutDivyapicigiletal.2022, author = {Endres, Leo M. and Jungblut, Marvin and Divyapicigil, Mustafa and Sauer, Markus and Stigloher, Christian and Christodoulides, Myron and Kim, Brandon J. and Schubert-Unkmeir, Alexandra}, title = {Development of a multicellular in vitro model of the meningeal blood-CSF barrier to study Neisseria meningitidis infection}, series = {Fluids and Barriers of the CNS}, volume = {19}, journal = {Fluids and Barriers of the CNS}, number = {1}, doi = {10.1186/s12987-022-00379-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300208}, year = {2022}, abstract = {Background Bacterial meningitis is a life-threatening disease that occurs when pathogens such as Neisseria meningitidis cross the meningeal blood cerebrospinal fluid barrier (mBCSFB) and infect the meninges. Due to the human-specific nature of N. meningitidis, previous research investigating this complex host-pathogen interaction has mostly been done in vitro using immortalized brain endothelial cells (BECs) alone, which often do not retain relevant barrier properties in culture. Here, we developed physiologically relevant mBCSFB models using BECs in co-culture with leptomeningeal cells (LMCs) to examine N. meningitidis interaction. Methods We used BEC-like cells derived from induced pluripotent stem cells (iBECs) or hCMEC/D3 cells in co-culture with LMCs derived from tumor biopsies. We employed TEM and structured illumination microscopy to characterize the models as well as bacterial interaction. We measured TEER and sodium fluorescein (NaF) permeability to determine barrier tightness and integrity. We then analyzed bacterial adherence and penetration of the cell barrier and examined changes in host gene expression of tight junctions as well as chemokines and cytokines in response to infection. Results Both cell types remained distinct in co-culture and iBECs showed characteristic expression of BEC markers including tight junction proteins and endothelial markers. iBEC barrier function as determined by TEER and NaF permeability was improved by LMC co-culture and remained stable for seven days. BEC response to N. meningitidis infection was not affected by LMC co-culture. We detected considerable amounts of BEC-adherent meningococci and a relatively small number of intracellular bacteria. Interestingly, we discovered bacteria traversing the BEC-LMC barrier within the first 24 h post-infection, when barrier integrity was still high, suggesting a transcellular route for N. meningitidis into the CNS. Finally, we observed deterioration of barrier properties including loss of TEER and reduced expression of cell-junction components at late time points of infection. Conclusions Here, we report, for the first time, on co-culture of human iPSC derived BECs or hCMEC/D3 with meningioma derived LMCs and find that LMC co-culture improves barrier properties of iBECs. These novel models allow for a better understanding of N. meningitidis interaction at the mBCSFB in a physiologically relevant setting.}, language = {en} }