@article{SimonKaethnerRufetal.2015, author = {Simon, Nadine and K{\"a}thner, Ivo and Ruf, Carolin A. and Pasqualotto, Emanuele and K{\"u}bler, Andrea and Halder, Sebastian}, title = {An auditory multiclass brain-computer interface with natural stimuli: Usability evaluation with healthy participants and a motor impaired end user}, series = {Frontiers in Human Neuroscience}, volume = {8}, journal = {Frontiers in Human Neuroscience}, number = {1039}, doi = {10.3389/fnhum.2014.01039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126450}, year = {2015}, abstract = {Brain-computer interfaces (BCIs) can serve as muscle independent communication aids. Persons, who are unable to control their eye muscles (e.g., in the completely locked-in state) or have severe visual impairments for other reasons, need BCI systems that do not rely on the visual modality. For this reason, BCIs that employ auditory stimuli were suggested. In this study, a multiclass BCI spelling system was implemented that uses animal voices with directional cues to code rows and columns of a letter matrix. To reveal possible training effects with the system, 11 healthy participants performed spelling tasks on 2 consecutive days. In a second step, the system was tested by a participant with amyotrophic lateral sclerosis (ALS) in two sessions. In the first session, healthy participants spelled with an average accuracy of 76\% (3.29 bits/min) that increased to 90\% (4.23 bits/min) on the second day. Spelling accuracy by the participant with ALS was 20\% in the first and 47\% in the second session. The results indicate a strong training effect for both the healthy participants and the participant with ALS. While healthy participants reached high accuracies in the first session and second session, accuracies for the participant with ALS were not sufficient for satisfactory communication in both sessions. More training sessions might be needed to improve spelling accuracies. The study demonstrated the feasibility of the auditory BCI with healthy users and stresses the importance of training with auditory multiclass BCIs, especially for potential end-users of BCI with disease.}, language = {en} } @article{KaethnerKueblerHalder2015, author = {K{\"a}thner, Ivo and K{\"u}bler, Andrea and Halder, Sebastian}, title = {Rapid P300 brain-computer interface communication with a head-mounted display}, series = {Frontiers in Neuroscience}, volume = {9}, journal = {Frontiers in Neuroscience}, number = {207}, doi = {10.3389/fnins.2015.00207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148520}, year = {2015}, abstract = {Visual ERP (P300) based brain-computer interfaces (BCIs) allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head-mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g., at a patient's bedside). To explore if similar accuracies can be achieved with a virtual reality (VR) headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS) to verify that usage of the headset is possible for a severely paralyzed person. Healthy participants performed online spelling with three different display methods. In one condition a 5 x 5 letter matrix was presented on a conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In the first (glasses A), the same 5 x 5 matrix filled the field of view of the user. In the second (glasses B), single letters of the matrix filled the field of view of the user. The participant in the LIS tested the VR headset on three different occasions (glasses A condition only). For healthy participants, average online spelling accuracies were 94\% (15.5 bits/min) using three flash sequences for spelling with the monitor and glasses A and 96\% (16.2 bits/min) with glasses B. In one session, the participant in the LIS reached an online spelling accuracy of 100\% (10 bits/min) using the glasses A condition. We also demonstrated that spelling with one flash sequence is possible with the VR headset for healthy users (mean: 32.1 bits/min, maximum reached by one user: 71.89 bits/min at 100\% accuracy). We conclude that the VR headset allows for rapid P300 BCI communication in healthy users and may be a suitable display option for severely paralyzed persons.}, language = {en} } @article{KaethnerHalderHintermuelleretal.2017, author = {K{\"a}thner, Ivo and Halder, Sebastian and Hinterm{\"u}ller, Christoph and Espinosa, Arnau and Guger, Christoph and Miralles, Felip and Vargiu, Eloisa and Dauwalder, Stefan and Rafael-Palou, Xavier and Sol{\`a}, Marc and Daly, Jean M. and Armstrong, Elaine and Martin, Suzanne and K{\"u}bler, Andrea}, title = {A Multifunctional Brain-Computer Interface Intended for Home Use: An Evaluation with Healthy Participants and Potential End Users with Dry and Gel-Based Electrodes}, series = {Frontiers in Neuroscience}, volume = {11}, journal = {Frontiers in Neuroscience}, number = {286}, doi = {10.3389/fnins.2017.00286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157925}, year = {2017}, abstract = {Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13\%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis.}, language = {en} } @article{KleihDahmsBotrelKuebler2021, author = {Kleih-Dahms, Sonja Christina and Botrel, Loic and K{\"u}bler, Andrea}, title = {The influence of motivation and emotion on sensorimotor rhythm-based brain-computer interface performance}, series = {Psychophysiology}, volume = {58}, journal = {Psychophysiology}, number = {8}, doi = {10.1111/psyp.13832}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259664}, year = {2021}, abstract = {While decades of research have investigated and technically improved brain-computer interface (BCI)-controlled applications, relatively little is known about the psychological aspects of brain-computer interfacing. In 35 healthy students, we investigated whether extrinsic motivation manipulated via monetary reward and emotional state manipulated via video and music would influence behavioral and psychophysiological measures of performance with a sensorimotor rhythm (SMR)-based BCI. We found increased task-related brain activity in extrinsically motivated (rewarded) as compared with nonmotivated participants but no clear effect of emotional state manipulation. Our experiment investigated the short-term effect of motivation and emotion manipulation in a group of young healthy subjects, and thus, the significance for patients in the locked-in state, who may be in need of a BCI, remains to be investigated.}, language = {en} } @article{KaufmannHolzKuebler2013, author = {Kaufmann, Tobias and Holz, Elisa M. and K{\"u}bler, Andrea}, title = {Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state}, series = {Frontiers in Human Neuroscience}, journal = {Frontiers in Human Neuroscience}, doi = {10.3389/fnins.2013.00129}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97079}, year = {2013}, abstract = {This paper describes a case study with a patient in the classic locked-in state, who currently has no means of independent communication. Following a user-centered approach, we investigated event-related potentials (ERP) elicited in different modalities for use in brain-computer interface (BCI) systems. Such systems could provide her with an alternative communication channel. To investigate the most viable modality for achieving BCI based communication, classic oddball paradigms (1 rare and 1 frequent stimulus, ratio 1:5) in the visual, auditory and tactile modality were conducted (2 runs per modality). Classifiers were built on one run and tested offline on another run (and vice versa). In these paradigms, the tactile modality was clearly superior to other modalities, displaying high offline accuracy even when classification was performed on single trials only. Consequently, we tested the tactile paradigm online and the patient successfully selected targets without any error. Furthermore, we investigated use of the visual or tactile modality for different BCI systems with more than two selection options. In the visual modality, several BCI paradigms were tested offline. Neither matrix-based nor so-called gaze-independent paradigms constituted a means of control. These results may thus question the gaze-independence of current gaze-independent approaches to BCI. A tactile four-choice BCI resulted in high offline classification accuracies. Yet, online use raised various issues. Although performance was clearly above chance, practical daily life use appeared unlikely when compared to other communication approaches (e.g., partner scanning). Our results emphasize the need for user-centered design in BCI development including identification of the best stimulus modality for a particular user. Finally, the paper discusses feasibility of EEG-based BCI systems for patients in classic locked-in state and compares BCI to other AT solutions that we also tested during the study.}, language = {en} } @article{HalderTakanoOraetal.2016, author = {Halder, Sebastian and Takano, Kouji and Ora, Hiroki and Onishi, Akinari and Utsumi, Kota and Kansaku, Kenji}, title = {An Evaluation of Training with an Auditory P300 Brain-Computer Interface for the Japanese Hiragana Syllabary}, series = {Frontiers in Neuroscience}, volume = {10}, journal = {Frontiers in Neuroscience}, number = {446}, doi = {10.3389/fnins.2016.00446}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165465}, year = {2016}, abstract = {Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70\% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12\% (0.2 bits/min) to 56\% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.}, language = {en} }