@article{Truswell2013, author = {Truswell, Arthur Stewart}, title = {Medical history of obesity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78910}, year = {2013}, abstract = {This paper contains the following sections, in approximate chronological order: Early years, Scientific research on energy metabolism, Clinical teaching, Evidence on health risks, Slow recognition of obesity in diabetes, Depression and war, some Obesity research continued in the 1950s and 1960s, New approaches to management, a Universal standard weight for height, Luxuskonsumption, Calories (incompletely) replaced by Joules, Food intakes of obese people, Genetics, unexpected Surge of obesity from 1980, Diabetes, Scarcity of effective, safe drugs for obesity, Leptin and Ghrelin stimulate basic research, Why has the obesity epidemic happened? What is the best weight-reducing diet? Bariatric surgery}, subject = {Fettsucht}, language = {en} } @article{TrinklKaluzaWallaceetal.2020, author = {Trinkl, Moritz and Kaluza, Benjamin F. and Wallace, Helen and Heard, Tim A. and Keller, Alexander and Leonhardt, Sara D.}, title = {Floral Species Richness Correlates with Changes in the Nutritional Quality of Larval Diets in a Stingless Bee}, series = {Insects}, volume = {11}, journal = {Insects}, number = {2}, issn = {2075-4450}, doi = {10.3390/insects11020125}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200605}, pages = {125}, year = {2020}, abstract = {Bees need food of appropriate nutritional quality to maintain their metabolic functions. They largely obtain all required nutrients from floral resources, i.e., pollen and nectar. However, the diversity, composition and nutritional quality of floral resources varies with the surrounding environment and can be strongly altered in human-impacted habitats. We investigated whether differences in plant species richness as found in the surrounding environment correlated with variation in the floral diversity and nutritional quality of larval provisions (i.e., mixtures of pollen, nectar and salivary secretions) composed by the mass-provisioning stingless bee Tetragonula carbonaria (Apidae: Meliponini). We found that the floral diversity of larval provisions increased with increasing plant species richness. The sucrose and fat (total fatty acid) content and the proportion and concentration of the omega-6 fatty acid linoleic acid decreased, whereas the proportion of the omega-3 fatty acid linolenic acid increased with increasing plant species richness. Protein (total amino acid) content and amino acid composition did not change. The protein to fat (P:F) ratio, known to affect bee foraging, increased on average by more than 40\% from plantations to forests and gardens, while the omega-6:3 ratio, known to negatively affect cognitive performance, decreased with increasing plant species richness. Our results suggest that plant species richness may support T. carbonaria colonies by providing not only a continuous resource supply (as shown in a previous study), but also floral resources of high nutritional quality.}, language = {en} } @article{SteijvenSpaetheSteffanDewenteretal.2017, author = {Steijven, Karin and Spaethe, Johannes and Steffan-Dewenter, Ingolf and H{\"a}rtel, Stephan}, title = {Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food}, series = {PeerJ}, volume = {5}, journal = {PeerJ}, number = {e3858}, doi = {10.7717/peerj.3858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170137}, year = {2017}, abstract = {Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research.}, language = {en} } @article{SprengerMuesseHartkeetal.2021, author = {Sprenger, Philipp P. and M{\"u}sse, Christian and Hartke, Juliane and Feldmeyer, Barbara and Schmitt, Thomas and Gebauer, Gerhard and Menzel, Florian}, title = {Dinner with the roommates: trophic niche differentiation and competition in a mutualistic ant-ant association}, series = {Ecological Entomology}, volume = {46}, journal = {Ecological Entomology}, number = {3}, doi = {10.1111/een.13002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228215}, pages = {562 -- 572}, year = {2021}, abstract = {1. The potential for competition is highest among species in close association. Despite net benefits for both parties, mutualisms can involve costs, including food competition. This might be true for the two neotropical ants Camponotus femoratus and Crematogaster levior, which share the same nest in a presumably mutualistic association (parabiosis). 2. While each nest involves one Crematogaster and one Camponotus partner, both taxa were recently found to comprise two cryptic species that show no partner preferences and seem ecologically similar. Since these cryptic species often occur in close sympatry, they might need to partition their niches to avoid competitive exclusion. 3. Here, we investigated first, is there interference competition between parabiotic Camponotus and Crematogaster, and do they prefer different food sources under competition? And second, is there trophic niche partitioning between the cryptic species of either genus? 4. Using cafeteria experiments, neutral lipid fatty acid and stable isotope analyses, we found evidence for interference competition, but also trophic niche partitioning between Camponotus and Crematogaster. Both preferred protein- and carbohydrate-rich baits, but at protein-rich baits Ca. femoratus displaced Cr. levior over time, suggesting a potential discovery-dominance trade-off between parabiotic partners. Only limited evidence was found for trophic differentiation between the cryptic species of each genus. 5. Although we cannot exclude differentiation in other niche dimensions, we argue that neutral dynamics might mediate the coexistence of cryptic species. This model system is highly suitable for further studies of the maintenance of species diversity and the role of mutualisms in promoting species coexistence.}, language = {en} } @article{SchreierBinnsWu2014, author = {Schreier, Peter and Binns, Colin and Wu, Dayong}, title = {To surrender or to persevere?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101096}, year = {2014}, abstract = {Second Editorial of Open Access Journal "Nutrition and Medicine (NUME)" published by W{\"u}rzburg University Press: http://nume.de}, subject = {Wissenschaftliches Arbeiten}, language = {en} } @article{SchreierBinnsHoeggeretal.2013, author = {Schreier, Peter and Binns, Colin and H{\"o}gger, Petra and Wu, Dayong}, title = {It began with citrus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74918}, year = {2013}, abstract = {First Editorial of Open Access Journal "Nutrition and Medicine (NUME)" published by W{\"u}rzburg University Press: http://nume.de}, subject = {Ern{\"a}hrung}, language = {en} } @article{SchilcherHilsmannAnkenbrandetal.2022, author = {Schilcher, Felix and Hilsmann, Lioba and Ankenbrand, Markus J. and Krischke, Markus and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {Honeybees are buffered against undernourishment during larval stages}, series = {Frontiers in Insect Science}, volume = {2}, journal = {Frontiers in Insect Science}, issn = {2673-8600}, doi = {10.3389/finsc.2022.951317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304646}, year = {2022}, abstract = {The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life.}, language = {en} } @article{RoemerAguilarMeyeretal.2022, author = {R{\"o}mer, Daniela and Aguilar, Gonzalo Pacheco and Meyer, Annika and Roces, Flavio}, title = {Symbiont demand guides resource supply: leaf-cutting ants preferentially deliver their harvested fragments to undernourished fungus gardens}, series = {The Science of Nature}, volume = {109}, journal = {The Science of Nature}, number = {3}, doi = {10.1007/s00114-022-01797-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325080}, year = {2022}, abstract = {Leaf-cutting ants are highly successful herbivores in the Neotropics. They forage large amounts of fresh plant material to nourish a symbiotic fungus that sustains the colony. It is unknown how workers organize the intra-nest distribution of resources, and whether they respond to increasing demands in some fungus gardens by adjusting the amount of delivered resources accordingly. In laboratory experiments, we analyzed the spatial distribution of collected leaf fragments among nest chambers in Acromyrmex ambiguus leaf-cutting ants, and how it changed when one of the fungus gardens experienced undernourishment. Plant fragments were evenly distributed among nest chambers when the fungal symbiont was well nourished. That pattern changed when one of the fungus gardens was undernourished and had a higher leaf demand, resulting in more leaf discs delivered to the undernourished fungus garden over at least 2 days after deprivation. Some ants bypassed nourished gardens to directly deliver their resource to the chamber with higher nutritional demand. We hypothesize that cues arising from that chamber might be used for orientation and/or that informed individuals, presumably stemming from the undernourished chamber, may preferentially orient to them.}, language = {en} } @article{RuedenauerRaubenheimerKessnerBeierleinetal.2020, author = {Ruedenauer, Fabian A. and Raubenheimer, David and Kessner-Beierlein, Daniela and Grund-Mueller, Nils and Noack, Lisa and Spaethe, Johannes and Leonhardt, Sara D.}, title = {Best be(e) on low fat: linking nutrient perception, regulation and fitness}, series = {Ecology Letters}, volume = {23}, journal = {Ecology Letters}, number = {3}, doi = {10.1111/ele.13454}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208709}, pages = {545-554}, year = {2020}, abstract = {Preventing malnutrition through consuming nutritionally appropriate resources represents a challenge for foraging animals. This is due to often high variation in the nutritional quality of available resources. Foragers consequently need to evaluate different food sources. However, even the same food source can provide a plethora of nutritional and non-nutritional cues, which could serve for quality assessment. We show that bumblebees, Bombus terrestris , overcome this challenge by relying on lipids as nutritional cue when selecting pollen. The bees 'prioritised' lipid perception in learning experiments and avoided lipid consumption in feeding experiments, which supported survival and reproduction. In contrast, survival and reproduction were severely reduced by increased lipid contents. Our study highlights the importance of fat regulation for pollen foraging bumblebees. It also reveals that nutrient perception, nutrient regulation and reproductive fitness can be linked, which represents an effective strategy enabling quick foraging decisions that prevent malnutrition and maximise fitness.}, language = {en} } @article{MengerLeeNotzetal.2022, author = {Menger, Johannes and Lee, Zheng-Yii and Notz, Quirin and Wallqvist, Julia and Hasan, M. Shahnaz and Elke, Gunnar and Dworschak, Martin and Meybohm, Patrick and Heyland, Daren K. and Stoppe, Christian}, title = {Administration of vitamin D and its metabolites in critically ill adult patients: an updated systematic review with meta-analysis of randomized controlled trials}, series = {Critical Care}, volume = {26}, journal = {Critical Care}, number = {1}, doi = {10.1186/s13054-022-04139-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299700}, year = {2022}, abstract = {Background The clinical significance of vitamin D administration in critically ill patients remains inconclusive. The purpose of this systematic review with meta-analysis was to investigate the effect of vitamin D and its metabolites on major clinical outcomes in critically ill patients, including a subgroup analysis based on vitamin D status and route of vitamin D administration. Methods Major databases were searched through February 9, 2022. Randomized controlled trials of adult critically ill patients with an intervention group receiving vitamin D or its metabolites were included. Random-effect meta-analyses were performed to estimate the pooled risk ratio (dichotomized outcomes) or mean difference (continuous outcomes). Risk of bias assessment included the Cochrane tool for assessing risk of bias in randomized trials. Results Sixteen randomized clinical trials with 2449 patients were included. Vitamin D administration was associated with lower overall mortality (16 studies: risk ratio 0.78, 95\% confidence interval 0.62-0.97, p = 0.03; I2 = 30\%), reduced intensive care unit length of stay (12 studies: mean difference - 3.13 days, 95\% CI - 5.36 to - 0.89, n = 1250, p = 0.006; I2 = 70\%), and shorter duration of mechanical ventilation (9 studies: mean difference - 5.07 days, 95\% CI - 7.42 to - 2.73, n = 572, p < 0.0001; I2 = 54\%). Parenteral administration was associated with a greater effect on overall mortality than enteral administration (test of subgroup differences, p = 0.04), whereas studies of parenteral subgroups had lower quality. There were no subgroup differences based on baseline vitamin D levels. Conclusions Vitamin D supplementation in critically ill patients may reduce mortality. Parenteral administration might be associated with a greater impact on mortality. Heterogeneity and assessed certainty among the studies limits the generalizability of the results.}, language = {en} }