@article{LeeSongHanetal.2015, author = {Lee, Eun-Hye and Song, Jin-Dong and Han, Il-Ki and Chang, Soo-Kyung and Langer, Fabian and H{\"o}fling, Sven and Forchel, Alfred and Kamp, Martin and Kim, Jong-Su}, title = {Structural and optical properties of position-retrievable low-density GaAs droplet epitaxial quantum dots for application to single photon sources with plasmonic optical coupling}, series = {Nanoscale Research Letters}, volume = {10}, journal = {Nanoscale Research Letters}, number = {114}, doi = {10.1186/s11671-015-0826-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143692}, year = {2015}, abstract = {The position of a single GaAs quantum dot (QD), which is optically active, grown by low-density droplet epitaxy (DE) (approximately 4 QDs/μm\(^{2}\)), was directly observed on the surface of a 45-nm-thick Al\(_{0.3}\)Ga\(_{0.7}\)As capping layer. The thin thickness of AlGaAs capping layer is useful for single photon sources with plasmonic optical coupling. A micro-photoluminescence for GaAs DE QDs has shown exciton/biexciton behavior in the range of 1.654 to 1.657 eV. The direct observation of positions of low-density GaAs DE QDs would be advantageous for mass fabrication of devices that use a single QD, such as single photon sources.}, language = {en} } @article{BelaidiRauchZhangetal.2019, author = {Belaidi, Houmam and Rauch, Florian and Zhang, Zuolun and Latouche, Camille and Boucekkine, Abdou and Marder, Todd B. and Halet, Jean-Francois}, title = {Insights into the optical properties of triarylboranes with strongly electron-accepting bis(fluoromesityl)boryl groups: when theory meets experiment}, series = {ChemPhotoChem}, volume = {4}, journal = {ChemPhotoChem}, number = {3}, doi = {10.1002/cptc.201900256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205600}, pages = {173-180}, year = {2019}, abstract = {The photophysical properties (absorption, fluorescence and phosphorescence) of a series of triarylboranes of the form 4-D-C\(_6\)H\(_4\)-B(Ar)\(_2\) (D=\(^t\)Bu or NPh\(_2\); Ar=mesityl (Mes) or 2,4,6-tris(trifluoromethylphenyl (Fmes)) were analyzed theoretically using state-of-the-art DFT and TD-DFT methods. Simulated emission spectra and computed decay rate constants are in very good agreement with the experimental data. Unrestricted electronic computations including vibronic contributions explain the unusual optical behavior of 4-\(^t\)Bu-C\(_6\)H\(_4\)-B(Fmes)\(_2\) 2, which shows both fluorescence and phosphorescence at nearly identical energies (at 77 K in a frozen glass). Analysis of the main normal modes responsible for the phosphorescence vibrational fine structure indicates that the bulky tert-butyl group tethered to the phenyl ring is strongly involved. Interestingly, in THF solvent, the computed energies of the singlet and triplet excited states are very similar for compound 2 only, which may explain why 2 shows phosphorescence in contrast to the other members of the series.}, language = {en} }