@article{LiuLegareSeufertetal.2020, author = {Liu, Siyuan and L{\´e}gar{\´e}, Marc-Andr{\´e} and Seufert, Jens and Prieschl, Dominic and Rempel, Anna and Englert, Lukas and Dellermann, Theresa and Paprocki, Valerie and Stoy, Andreas and Braunschweig, Holger}, title = {2,2′-Bipyridyl as a Redox-Active Borylene Abstraction Agent}, series = {Inorganic Chemistry}, volume = {59}, journal = {Inorganic Chemistry}, number = {15}, doi = {10.1021/acs.inorgchem.0c01383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215595}, pages = {10866-10873}, year = {2020}, abstract = {2,2′-Bipyridyl is shown to spontaneously abstract a borylene fragment (R-B:) from various hypovalent boron compounds. This process is a redox reaction in which the bipyridine is reduced and becomes a dianionic substituent bound to boron through its two nitrogen atoms. Various transition metal-borylene complexes and diboranes, as a well as a diborene, take part in this reaction. In the latter case, our results show an intriguing example of the homolytic cleavage of a B═B double bond.}, language = {en} } @article{LindlGuoKrummenacheretal.2021, author = {Lindl, Felix and Guo, Xueying and Krummenacher, Ivo and Rauch, Florian and Rempel, Anna and Paprocki, Valerie and Dellermann, Theresa and Stennett, Tom E. and Lamprecht, Anna and Br{\"u}ckner, Tobias and Radacki, Krzysztof and B{\´e}langer-Chabot, Guillaume and Marder, Todd B. and Lin, Zhenyang and Braunschweig, Holger}, title = {Rethinking Borole Cycloaddition Reactivity}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {43}, doi = {10.1002/chem.202101290}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256888}, pages = {11226-11233}, year = {2021}, abstract = {Boroles are attracting broad interest for their myriad and diverse applications, including in synthesis, small molecule activation and functional materials. Their properties and reactivity are closely linked to the cyclic conjugated diene system, which has been shown to participate in cycloaddition reactions, such as the Diels-Alder reaction with alkynes. The reaction steps leading to boranorbornadienes, borepins and tricyclic boracyclohexenes from the thermal reaction of boroles with alkynes are seemingly well understood as judged from the literature. Herein, we question the long-established mechanistic picture of pericyclic rearrangements by demonstrating that seven-membered borepins (i. e., heptaphenylborepin and two derivatives substituted with a thienyl and chloride substituent on boron) exist in a dynamic equilibrium with the corresponding bicyclic boranorbornadienes, the direct Diels-Alder products, but are not isolable products from the reactions. Heating gradually converts the isomeric mixtures into fluorescent tricyclic boracyclohexenes, the most stable isomers in the series. Results from mechanistic DFT calculations reveal that the tricyclic compounds derive from the boranorbornadienes and not the borepins, which were previously believed to be intermediates in purely pericyclic processes.}, language = {en} } @article{BraunschweigConstantinidisDellermannetal.2016, author = {Braunschweig, Holger and Constantinidis, Philipp and Dellermann, Theresa and Ewing, William and Fischer, Ingo and Hess, Merlin and Knight, Fergus and Rempel, Anna and Schneider, Christoph and Ullrich, Stefan and Vargas, Alfredo and Woolins, Derek}, title = {Highly Strained Heterocycles Constructed from Boron-Boron Multiple Bonds and Heavy Chalcogens}, series = {Angewandte Chemie, International Edition}, volume = {55}, journal = {Angewandte Chemie, International Edition}, number = {18}, doi = {10.1002/anie.201601691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138237}, pages = {5606 -- 5609}, year = {2016}, abstract = {The reactions of a diborene with elemental selenium or tellurium are shown to afford a diboraselenirane or diboratellurirane, respectively. These reactions are reminiscent of the sequestration of subvalent oxygen and nitrogen in the formation of oxiranes and aziridines; however, such reactivity is not known between alkenes and the heavy chalcogens. Although carbon is too electronegative to affect the reduction of elements with lower relative electronegativity, the highly reducing nature of the B B double bond enables reactions with Se0 and Te0. The capacity of multiple bonds between boron atoms to donate electron density is highlighted in reactions where diborynes behave as nucleophiles, attacking one of the two Te atoms of diaryltellurides, forming salts consisting of diboratellurenium cations and aryltelluride anions.}, subject = {Bor}, language = {en} }