@article{HussHalbgebauerOeckletal.2016, author = {Huss, Andr{\´e} M. and Halbgebauer, Steffen and {\"O}ckl, Patrick and Trebst, Corinna and Spreer, Annette and Borisow, Nadja and Harrer, Andrea and Brecht, Isabel and Balint, Bettina and Stich, Oliver and Schlegel, Sabine and Retzlaff, Nele and Winkelmann, Alexander and Roesler, Romy and Lauda, Florian and Yildiz, {\"O}zlem and Voß, Elke and Muche, Rainer and Rauer, Sebastian and Bergh, Florian Then and Otto, Markus and Paul, Friedemann and Wildemann, Brigitte and Kraus, J{\"o}rg and Ruprecht, Klemens and Stangel, Martin and Buttmann, Mathias and Zettl, Uwe K. and Tumani, Hayrettin}, title = {Importance of cerebrospinal fluid analysis in the era of McDonald 2010 criteria: a German-Austrian retrospective multicenter study in patients with a clinically isolated syndrome}, series = {Journal of Neurology}, volume = {263}, journal = {Journal of Neurology}, number = {12}, doi = {10.1007/s00415-016-8302-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186619}, pages = {2499-2504}, year = {2016}, abstract = {The majority of patients presenting with a first clinical symptom suggestive of multiple sclerosis (MS) do not fulfill the MRI criteria for dissemination in space and time according to the 2010 revision of the McDonald diagnostic criteria for MS and are thus classified as clinically isolated syndrome (CIS). To re-evaluate the utility of cerebrospinal fluid (CSF) analysis in the context of the revised McDonald criteria from 2010, we conducted a retrospective multicenter study aimed at determining the prevalence and predictive value of oligoclonal IgG bands (OCBs) in patients with CIS. Patients were recruited from ten specialized MS centers in Germany and Austria. We collected data from 406 patients; at disease onset, 44/406 (11 \%) fulfilled the McDonald 2010 criteria for MS. Intrathecal IgG OCBs were detected in 310/362 (86 \%) of CIS patients. Those patients were twice as likely to convert to MS according to McDonald 2010 criteria as OCB-negative individuals (hazard ratio = 2.1, p = 0.0014) and in a shorter time period of 25 months (95 \% CI 21-34) compared to 47 months in OCB-negative individuals (95 \% CI 36-85). In patients without brain lesions at first attack and presence of intrathecal OCBs (30/44), conversion rate to MS was 60 \% (18/30), whereas it was only 21 \% (3/14) in those without OCBs. Our data confirm that in patients with CIS the risk of conversion to MS substantially increases if OCBs are present at onset. CSF analysis definitely helps to evaluate the prognosis in patients who do not have MS according to the revised McDonald criteria.}, language = {en} } @article{BillerCholiBlaimeretal.2014, author = {Biller, Armin and Choli, Morwan and Blaimer, Martin and Breuer, Felix A. and Jakob, Peter M. and Bartsch, Andreas J.}, title = {Combined Acquisition Technique (CAT) for Neuroimaging of Multiple Sclerosis at Low Specific Absorption Rates (SAR)}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {3}, issn = {1932-6203}, doi = {10.1371/journal.pone.0091030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117179}, pages = {e91030}, year = {2014}, abstract = {Purpose: To compare a novel combined acquisition technique (CAT) of turbo-spin-echo (TSE) and echo-planar-imaging (EPI) with conventional TSE. CAT reduces the electromagnetic energy load transmitted for spin excitation. This radiofrequency (RF) burden is limited by the specific absorption rate (SAR) for patient safety. SAR limits restrict high-field MRI applications, in particular. Material and Methods: The study was approved by the local Medical Ethics Committee. Written informed consent was obtained from all participants. T2- and PD-weighted brain images of n = 40 Multiple Sclerosis (MS) patients were acquired by CAT and TSE at 3 Tesla. Lesions were recorded by two blinded, board-certificated neuroradiologists. Diagnostic equivalence of CAT and TSE to detect MS lesions was evaluated along with their SAR, sound pressure level (SPL) and sensations of acoustic noise, heating, vibration and peripheral nerve stimulation. Results: Every MS lesion revealed on TSE was detected by CAT according to both raters (Cohen's kappa of within-rater/across-CAT/TSE lesion detection kappa(CAT) = 1.00, at an inter-rater lesion detection agreement of kappa(LES) = 0.82). CAT reduced the SAR burden significantly compared to TSE (p<0.001). Mean SAR differences between TSE and CAT were 29.0 (+/- 5.7) \% for the T2-contrast and 32.7 (+/- 21.9) \% for the PD-contrast (expressed as percentages of the effective SAR limit of 3.2 W/kg for head examinations). Average SPL of CAT was no louder than during TSE. Sensations of CAT-vs. TSE-induced heating, noise and scanning vibrations did not differ. Conclusion: T2-/PD-CAT is diagnostically equivalent to TSE for MS lesion detection yet substantially reduces the RF exposure. Such SAR reduction facilitates high-field MRI applications at 3 Tesla or above and corresponding protocol standardizations but CAT can also be used to scan faster, at higher resolution or with more slices. According to our data, CAT is no more uncomfortable than TSE scanning.}, language = {en} }