@article{RichterExnerBratengeieretal.2019, author = {Richter, Anne and Exner, Florian and Bratengeier, Klaus and Polat, B{\"u}lent and Flentje, Michael and Weick, Stefan}, title = {Impact of beam configuration on VMAT plan quality for Pinnacle\(^3\)Auto-Planning for head and neck cases}, series = {Radiation Oncology}, volume = {14}, journal = {Radiation Oncology}, doi = {10.1186/s13014-019-1211-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200301}, pages = {12}, year = {2019}, abstract = {Background The purpose of this study was to compare automatically generated VMAT plans to find the superior beam configurations for Pinnacle3 Auto-Planning and share "best practices". Methods VMAT plans for 20 patients with head and neck cancer were generated using Pinnacle3 Auto-Planning Module (Pinnacle3 Version 9.10) with different beam setup parameters. VMAT plans for single (V1) or double arc (V2) and partial or full gantry rotation were optimized. Beam configurations with different collimator positions were defined. Target coverage and sparing of organs at risk were evaluated based on scoring of an evaluation parameter set. Furthermore, dosimetric evaluation was performed based on the composite objective value (COV) and a new cross comparison method was applied using the COVs. Results The evaluation showed a superior plan quality for double arcs compared to one single arc or two single arcs for all cases. Plan quality was superior if a full gantry rotation was allowed during optimization for unilateral target volumes. A double arc technique with collimator setting of 15° was superior to a double arc with collimator 60° and a two single arcs with collimator setting of 15° and 345°. Conclusion The evaluation showed that double and full arcs are superior to single and partial arcs in terms of organs at risk sparing even for unilateral target volumes. The collimator position was found as an additional setup parameter, which can further improve the target coverage and sparing of organs at risk.}, language = {en} } @article{BratengeierGaineyFlentje2011, author = {Bratengeier, Klaus and Gainey, Mark B. and Flentje, Michael}, title = {Fast IMRT by increasing the beam number and reducing the number of segments}, series = {Radiation Oncology}, volume = {6}, journal = {Radiation Oncology}, number = {170}, doi = {10.1186/1748-717X-6-170}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137994}, year = {2011}, abstract = {Purpose The purpose of this work is to develop fast deliverable step and shoot IMRT technique. A reduction in the number of segments should theoretically be possible, whilst simultaneously maintaining plan quality, provided that the reduction is accompanied by an increased number of gantry angles. A benefit of this method is that the segment shaping could be performed during gantry motion, thereby reducing the delivery time. The aim was to find classes of such solutions whose plan quality can compete with conventional IMRT. Materials/Methods A planning study was performed. Step and shoot IMRT plans were created using direct machine parameter optimization (DMPO) as a reference. DMPO plans were compared to an IMRT variant having only one segment per angle ("2-Step Fast"). 2-Step Fast is based on a geometrical analysis of the topology of the planning target volume (PTV) and the organs at risk (OAR). A prostate/rectum case, spine metastasis/spinal cord, breast/lung and an artificial PTV/OAR combination of the ESTRO-Quasimodo phantom were used for the study. The composite objective value (COV), a quality score, and plan delivery time were compared. The delivery time for the DMPO reference plan and the 2-Step Fast IMRT technique was measured and calculated for two different linacs, a twelve year old Siemens Primus™ ("old" linac) and two Elekta Synergy™ "S" linacs ("new" linacs). Results 2-Step Fast had comparable or better quality than the reference DMPO plan. The number of segments was smaller than for the reference plan, the number of gantry angles was between 23 and 34. For the modern linac the delivery time was always smaller than that for the reference plan. The calculated (measured) values showed a mean delivery time reduction of 21\% (21\%) for the new linac, and of 7\% (3\%) for the old linac compared to the respective DMPO reference plans. For the old linac, the data handling time per beam was the limiting factor for the treatment time reduction. Conclusions 2-Step Fast plans are suited to reduce the delivery time, especially if the data handling time per beam is short. The plan quality can be retained or even increased for fewer segments provided more gantry angles are used.}, language = {en} }