@article{HarterBernatzScholzetal.2015, author = {Harter, Patrick N. and Bernatz, Simon and Scholz, Alexander and Zeiner, Pia S. and Zinke, Jenny and Kiyose, Makoto and Blasel, Stella and Beschorner, Rudi and Senft, Christian and Bender, Benjamin and Ronellenfitsch, Michael W. and Wikman, Harriet and Glatzel, Markus and Meinhardt, Matthias and Juratli, Tareq A. and Steinbach, Joachim P. and Plate, Karl H. and Wischhusen, J{\"o}rg and Weide, Benjamin and Mittelbronn, Michel}, title = {Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {38}, doi = {10.18632/oncotarget.5696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137107}, pages = {40836 -- 40849}, year = {2015}, abstract = {The activation of immune cells by targeting checkpoint inhibitors showed promising results with increased patient survival in distinct primary cancers. Since only limited data exist for human brain metastases, we aimed at characterizing tumor infiltrating lymphocytes (TILs) and expression of immune checkpoints in the respective tumors. Two brain metastases cohorts, a mixed entity cohort (n = 252) and a breast carcinoma validation cohort (n = 96) were analyzed for CD3+, CD8+, FOXP3+, PD-1+ lymphocytes and PD-L1+ tumor cells by immunohistochemistry. Analyses for association with clinico-epidemiological and neuroradiological parameters such as patient survival or tumor size were performed. TILs infiltrated brain metastases in three different patterns (stromal, peritumoral, diffuse). While carcinomas often show a strong stromal infiltration, TILs in melanomas often diffusely infiltrate the tumors. Highest levels of CD3+ and CD8+ lymphocytes were seen in renal cell carcinomas (RCC) and strongest PD-1 levels on RCCs and melanomas. High amounts of TILs, high ratios of PD-1+/CD8+ cells and high levels of PD-L1 were negatively correlated with brain metastases size, indicating that in smaller brain metastases CD8+ immune response might get blocked. PD-L1 expression strongly correlated with TILs and FOXP3 expression. No significant association of patient survival with TILs was observed, while high levels of PD-L1 showed a strong trend towards better survival in melanoma brain metastases (Log-Rank p = 0.0537). In summary, melanomas and RCCs seem to be the most immunogenic entities. Differences in immunotherapeutic response between tumor entities regarding brain metastases might be attributable to this finding and need further investigation in larger patient cohorts.}, language = {en} } @article{HammHoeger2011, author = {Hamm, Henning and H{\"o}ger, Peter H}, title = {Skin Tumors in Childhood}, series = {Deutsches {\"A}rzteblatt International}, volume = {108}, journal = {Deutsches {\"A}rzteblatt International}, number = {20}, doi = {10.3238/arztebl.2011.0347}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142402}, pages = {347-353}, year = {2011}, abstract = {Background: Dermatologists, paediatricians, and general practitioners are often consulted by worried parents for the evaluation of a cutaneous tumor. Methods: Selective literature review. Results: Only 1-2\% of skin tumors excised in children turn out to be malignant when examined histologically. Warning signs of malignancy include rapid growth, firm consistency, diameter exceeding 3 cm, ulceration, a non-movable mass, and presence in the neonatal period. The more common malignant skin tumors in adults-basal cell carcinoma, cutaneous squamous cell carcinoma, and melanoma-are very rare in childhood. Congenital melanocytic nevi and sebaceous nevi bear a lower malignant potential than previously believed; nevertheless, their excision is often indicated. A Spitz nevus can mimic a melanoma both clinically and histologically. Some benign skin tumors of childhood tend to regress spontaneously within a few years but may cause complications at particular locations and when multiple. For infantile hemangiomas requiring systemic treatment because of imminent obstruction or ulceration, propranolol seems to have a far more favorable risk-benefit ratio than corticosteroids. Conclusion: Physicians need specialized knowledge in order to decide whether a skin tumor in a child should be excised, non-surgically treated, or further evaluated, or whether it can be safely left untreated because of the likelihood of spontaneous remission.}, language = {en} } @article{HafnerHoubenBaeurleetal.2012, author = {Hafner, Christian and Houben, Roland and Baeurle, Anne and Ritter, Cathrin and Schrama, David and Landthaler, Michael and Becker, J{\"u}rgen C.}, title = {Activation of the PI3K/AKT Pathway in Merkel Cell Carcinoma}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {2}, doi = {10.1371/journal.pone.0031255}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131398}, pages = {e31255}, year = {2012}, abstract = {Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with an increasing incidence. The understanding of the molecular carcinogenesis of MCC is limited. Here, we scrutinized the PI3K/AKT pathway, one of the major pathways activated in human cancer, in MCC. Immunohistochemical analysis of 41 tumor tissues and 9 MCC cell lines revealed high levels of AKT phosphorylation at threonine 308 in 88\% of samples. Notably, the AKT phosphorylation was not correlated with the presence or absence of the Merkel cell polyoma virus (MCV). Accordingly, knock-down of the large and small T antigen by shRNA in MCV positive MCC cells did not affect phosphorylation of AKT. We also analyzed 46 MCC samples for activating PIK3CA and AKT1 mutations. Oncogenic PIK3CA mutations were found in 2/46 (4\%) MCCs whereas mutations in exon 4 of AKT1 were absent. MCC cell lines demonstrated a high sensitivity towards the PI3K inhibitor LY-294002. This finding together with our observation that the PI3K/AKT pathway is activated in the majority of human MCCs identifies PI3K/AKT as a potential new therapeutic target for MCC patients.}, language = {en} } @article{GrimmHufnagelWobseretal.2018, author = {Grimm, Johannes and Hufnagel, Anita and Wobser, Marion and Borst, Andreas and Haferkamp, Sebastian and Houben, Roland and Meierjohann, Svenja}, title = {BRAF inhibition causes resilience of melanoma cell lines by inducing the secretion of FGF1}, series = {Oncogenesis}, volume = {7}, journal = {Oncogenesis}, number = {71}, doi = {10.1038/s41389-018-0082-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177261}, year = {2018}, abstract = {Approximately half of all melanoma patients harbour activating mutations in the serine/threonine kinase BRAF. This is the basis for one of the main treatment strategies for this tumor type, the targeted therapy with BRAF and MEK inhibitors. While the initial responsiveness to these drugs is high, resistance develops after several months, frequently at sites of the previously responding tumor. This indicates that tumor response is incomplete and that a certain tumor fraction survives even in drug-sensitive patients, e.g., in a therapy-induced senescence-like state. Here, we show in several melanoma cell lines that BRAF inhibition induces a secretome with stimulating effect on fibroblasts and naive melanoma cells. Several senescence-associated factors were found to be transcribed and secreted in response to BRAF or MEK inhibition, among them members of the fibroblast growth factor family. We identified the growth factor FGF1 as mediator of resilience towards BRAF inhibition, which limits the pro-apoptotic effects of the drug and activates fibroblasts to secrete HGF. FGF1 regulation was mediated by the PI3K pathway and by FRA1, a direct target gene of the MAPK pathway. When FGFR inhibitors were applied in parallel to BRAF inhibitors, resilience was broken, thus providing a rationale for combined therapeutical application.}, language = {en} } @article{GlutschAmaralGarbeetal.2020, author = {Glutsch, Valerie and Amaral, Teresa and Garbe, Claus and Thoms, Kai-Martin and Mohr, Peter and Hauschild, Axel and Schilling, Bastian}, title = {Indirect Comparison of Combined BRAF and MEK Inhibition in Melanoma Patients with Elevated Baseline Lactate Dehydrogenase}, series = {Acta Dermato-Venereologica}, volume = {100}, journal = {Acta Dermato-Venereologica}, doi = {10.2340/00015555-3526}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230190}, year = {2020}, abstract = {The approval of BRAF and MEK inhibitors has signifi-cantly improved treatment outcomes for patients with BRAF-mutated metastatic melanoma. The 3 first-line targeted therapy trials have provided similar results, and thus the identification of predictive biomarkers may generate a more precise basis for clinical deci-sion-making. Elevated baseline lactate dehydrogenase (LDH) has already been determined as a strong prog-nostic factor. Therefore, this indirect analysis compa-red subgroups with elevated baseline LDH across the pivotal targeted therapy trials co-BRIM, COMBI-v and COLUMBUS part 1. The Bucher method was used to compare progression-free survival, objective response rate and overall survival indirectly. The results show a non-significant risk reduction for progression in the subgroup with elevated baseline LDH receiving vemu-rafenib plus cobimetinib compared with dabrafenib plus trametinib and encorafenib plus binimetinib. Al-though an indirect comparison, these data might pro-vide some guidance for treatment recommendations in melanoma patients with elevated LDH.}, language = {en} } @article{EsnaultSchramaHoubenetal.2022, author = {Esnault, Clara and Schrama, David and Houben, Roland and Guy{\´e}tant, Serge and Desgranges, Audrey and Martin, Camille and Berthon, Patricia and Viaud-Massuard, Marie-Claude and Touz{\´e}, Antoine and Kervarrec, Thibault and Samimi, Mahtab}, title = {Antibody-drug conjugates as an emerging therapy in oncodermatology}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {3}, issn = {2072-6694}, doi = {10.3390/cancers14030778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262192}, year = {2022}, abstract = {Antibody-drug conjugates (ADCs) are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. Such drugs consist in a monoclonal antibody linked to a cytotoxic agent, allowing a specific cytotoxicity to tumor cells. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. In this regard, targeted therapies (e.g., kinase inhibitors) or immune checkpoint-blocking antibodies outperformed conventional chemotherapy, with proven benefit to survival. Nevertheless, primary and acquired resistances as well as adverse events remain limitations of these therapies. Therefore, ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology.}, language = {en} } @article{BeckerAndersenHofmeisterMuelleretal.2012, author = {Becker, J{\"u}rgen C. and Andersen, Mads H. and Hofmeister-M{\"u}ller, Valeska and Wobser, Marion and Frey, Lidia and Sandig, Christiane and Walter, Steffen and Singh-Jasuja, Harpreet and K{\"a}mpgen, Eckhart and Opitz, Andreas and Zapatka, Marc and Br{\"o}cker, Eva-B. and thor Straten, Per and Schrama, David and Ugurel, Selma}, title = {Survivin-specific T-cell reactivity correlates with tumor response and patient survival: a phase-II peptide vaccination trial in metastatic melanoma}, series = {Cancer Immunology, Immunotherapy}, volume = {61}, journal = {Cancer Immunology, Immunotherapy}, number = {11}, doi = {10.1007/s00262-012-1266-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126215}, pages = {2091-2103}, year = {2012}, abstract = {Background Therapeutic vaccination directed to induce an anti-tumoral T-cell response is a field of extensive investigation in the treatment of melanoma. However, many vaccination trials in melanoma failed to demonstrate a correlation between the vaccine-specific immune response and therapy outcome. This has been mainly attributed to immune escape by antigen loss, rendering us in the need of new vaccination targets. Patients and methods This phase-II trial investigated a peptide vaccination against survivin, an oncogenic inhibitor-of-apoptosis protein crucial for the survival of tumor cells, in HLA-A1/-A2/-B35-positive patients with treatment-refractory stage-IV metastatic melanoma. The study endpoints were survivin-specific T-cell reactivity (SSTR), safety, response, and survival (OS). Results Sixty-one patients (ITT) received vaccination therapy using three different regimens. 55 patients (PP) were evaluable for response and survival, and 41/55 for SSTR. Patients achieving progression arrest (CR + PR + SD) more often showed SSTRs than patients with disease progression (p = 0.0008). Patients presenting SSTRs revealed a prolonged OS (median 19.6 vs. 8.6 months; p = 0.0077); multivariate analysis demonstrated SSTR as an independent predictor of survival (p = 0.013). The induction of SSTRs was associated with gender (female vs. male; p = 0.014) and disease stage (M1a/b vs. M1c; p = 0.010), but not with patient age, HLA type, performance status, or vaccination regimen. Conclusion Survivin-specific T-cell reactivities strongly correlate with tumor response and patient survival, indicating that vaccination with survivin-derived peptides is a promising treatment strategy in melanoma.}, language = {en} } @article{BeckerAndersenHofmeisterMuelleretal.2012, author = {Becker, J{\"u}rgen C. and Andersen, Mads H. and Hofmeister-M{\"u}ller, Valeska and Wobser, Marion and Frey, Lidia and Sandig, Christiane and Walter, Steffen and Singh-Jasuja, Harpreet and K{\"a}mpgen, Eckhart and Opitz, Andreas and Zapatka, Marc and Br{\"o}cker, Eva-B. and thor Straten, Per and Schrama, David and Ugurel, Selma}, title = {Survivin-specific T-cell reactivity correlates with tumor response and patient survival: a phase-II peptide vaccination trial in metastatic melanoma}, series = {Cancer Immunology, Immunotherapy}, volume = {61}, journal = {Cancer Immunology, Immunotherapy}, number = {11}, doi = {10.1007/s00262-012-1266-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124830}, pages = {2091-2103}, year = {2012}, abstract = {Background Therapeutic vaccination directed to induce an anti-tumoral T-cell response is a field of extensive investigation in the treatment of melanoma. However, many vaccination trials in melanoma failed to demonstrate a correlation between the vaccine-specific immune response and therapy outcome. This has been mainly attributed to immune escape by antigen loss, rendering us in the need of new vaccination targets. Patients and methods This phase-II trial investigated a peptide vaccination against survivin, an oncogenic inhibitor-of-apoptosis protein crucial for the survival of tumor cells, in HLA-A1/-A2/-B35-positive patients with treatment-refractory stage-IV metastatic melanoma. The study endpoints were survivin-specific T-cell reactivity (SSTR), safety, response, and survival (OS). Results Sixty-one patients (ITT) received vaccination therapy using three different regimens. 55 patients (PP) were evaluable for response and survival, and 41/55 for SSTR. Patients achieving progression arrest (CR + PR + SD) more often showed SSTRs than patients with disease progression (p = 0.0008). Patients presenting SSTRs revealed a prolonged OS (median 19.6 vs. 8.6 months; p = 0.0077); multivariate analysis demonstrated SSTR as an independent predictor of survival (p = 0.013). The induction of SSTRs was associated with gender (female vs. male; p = 0.014) and disease stage (M1a/b vs. M1c; p = 0.010), but not with patient age, HLA type, performance status, or vaccination regimen. Conclusion Survivin-specific T-cell reactivities strongly correlate with tumor response and patient survival, indicating that vaccination with survivin-derived peptides is a promising treatment strategy in melanoma.}, language = {en} } @article{BanickaMartensPanzeretal.2022, author = {Banicka, Veronika and Martens, Marie Christine and Panzer, R{\"u}diger and Schrama, David and Emmert, Steffen and Boeckmann, Lars and Thiem, Alexander}, title = {Homozygous CRISPR/Cas9 knockout generated a novel functionally active exon 1 skipping XPA variant in melanoma cells}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911649}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290427}, year = {2022}, abstract = {Defects in DNA repair pathways have been associated with an improved response to immune checkpoint inhibition (ICI). In particular, patients with the nucleotide excision repair (NER) defect disease Xeroderma pigmentosum (XP) responded impressively well to ICI treatment. Recently, in melanoma patients, pretherapeutic XP gene expression was predictive for anti-programmed cell death-1 (PD-1) ICI response. The underlying mechanisms of this finding are still to be revealed. Therefore, we used CRISPR/Cas9 to disrupt XPA in A375 melanoma cells. The resulting subclonal cell lines were investigated by Sanger sequencing. Based on their genetic sequence, candidates from XPA exon 1 and 2 were selected and further analyzed by immunoblotting, immunofluorescence, HCR and MTT assays. In XPA exon 1, we established a homozygous (c.19delG; p.A7Lfs*8) and a compound heterozygous (c.19delG/c.19_20insG; p.A7Lfs*8/p.A7Gfs*55) cell line. In XPA exon 2, we generated a compound heterozygous mutated cell line (c.206_208delTTG/c.208_209delGA; p.I69_D70delinsN/p.D70Hfs*31). The better performance of the homozygous than the heterozygous mutated exon 1 cells in DNA damage repair (HCR) and post-UV-C cell survival (MTT), was associated with the expression of a novel XPA protein variant. The results of our study serve as the fundamental basis for the investigation of the immunological consequences of XPA disruption in melanoma.}, language = {en} } @article{AnelliOrdasKneitzetal.2018, author = {Anelli, Viviana and Ordas, Anita and Kneitz, Susanne and Sagredo, Leonel Munoz and Gourain, Victor and Schartl, Manfred and Meijer, Annemarie H. and Mione, Marina}, title = {Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression}, series = {Frontiers in Genetics}, volume = {9}, journal = {Frontiers in Genetics}, number = {675}, issn = {1664-8021}, doi = {10.3389/fgene.2018.00675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196963}, year = {2018}, abstract = {Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc\&acc=GSE37015.}, language = {en} }