@phdthesis{Sauer2021, author = {Sauer, Susanne}, title = {Implementation and Application of QM/MM Hybrid Methods}, doi = {10.25972/OPUS-24321}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243213}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Within this work, an additive and a subtractive QM/MM interface were implemented into CAST. The interactions between QM and MM system are described via electrostatic embedding. Link atoms are used to saturate dangling bonds originating from the separation of QM and MM system. Available energy evaluation methods to be combined include force fields (OPLSAA and AMBER), semi-empirical programs (Mopac and DFTB+), and quantum-chemical methods (from Gaussian, Orca, and Psi4). Both the additive and the subtractive interface can deal with periodic boundary conditions. The subtractive scheme was extended to enable QM/QM, three-layer, and multi-center calculations. Another feature only available within the subtractive interface is the microiteration procedure for local optimizations. The novel QM/MM methods were applied to the investigation of the reaction path for the complex formation between rhodesain and K11777. Benchmark calculations show a very good agreement with results from Gaussian-ONIOM. When comparing the relative energies obtained with different options to a computation where the whole system was treated with the "QM method" DFTB3, the electrostatic embedding scheme with option "delM3" gives the best results. "delM3" means that atoms with up to three bonds distance to the QM region are ignored when creating the external charges. This is done in order to avoid a double counting of Coulomb interactions between QM and MM system. The embedding scheme for the inner system in a three-layer calculation, however, does not have a significant influence on the energies. The same is true for the choice of the coupling scheme: Whether the additive or the subtractive QM/MM interface is applied does not alter the results significantly. The choice of the QM region, though, proved to be an important factor. As can be seen from the comparison of two QM systems of different size, bigger is not always better here. Instead, one has to make sure not to separate important (polar) interactions by the QM/MM border. After this benchmark study with singlepoint calculations, the various possibilities of CAST were used to approximate the solution of a remaining problem: The predicted reaction energy for the formation of the rhodesain-K11777 complex differs significantly depending on the starting point of the reaction path. The reason for this is assumed to be an inadequate adjustment of the environment during the scans, which leads to a better stabilization of the starting structure in comparison to the final structure. The first approach to improve this adjustment was performing the relaxed scan with a bigger QM region instead of the minimal QM system used before. While the paths starting from the covalent complex do not change significantly, those starting from the non-covalent complex become more exothermic, leading to a higher similarity of the two paths. Nevertheless, the difference of the reaction energy is still around 15 kcal/mol, which is far from a perfect agreement. For this reason, Umbrella Samplings were run. Here, the adjustment of the environment is not done by local optimizations like in the scans, but by MD simulations. This has the advantage that the system can cross barriers and reach different local minima. The relative free energies obtained by Umbrella Samplings with suitable QM regions are nearly identical, independently of the starting point of the calculation. Thus, \(\Delta A\) evaluated by these computations can be assumed to reproduce the real energy change best. An MD simulation that was started from the transition state in order to mimic a "real-time" reaction indicates a very fast adjustment of the environment during the formation of the complex. This confirms that Umbrella Sampling is probably better suitable to describe the reaction path than a scan, where the environment can never move strong enough to leave the current local minimum.}, subject = {Quantenmechanik}, language = {en} } @phdthesis{Musch2003, author = {Musch, Patrick}, title = {Large-Scale Applications of Multi-Reference Methods in Chemistry and Development of a Multi-Reference Moller-Plesset Perturbation Theory Program}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7741}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {The first part of this work focuses on the characterization of systems which complex electronic structures require the application of multi-reference methods. The anti-tumor efficacy of the natural product Neocarzinostatin is based on the formation of diradicals and causes DNA cleavage and finally cytolysis. Computations on model systems performed in the present work show the influence of structural features on the mode of action and the efficacy of this antitumor-antibiotic. The cyclization of systems related to the enyne-cumulene framework like the enyne-allenes was investigated earlier and relations to the more unusual class of enyne-ketenes are analyzed. The class of enyne-ketenes (and also the enyne-allenes) show a broad spectrum of possible intermediates (diradicals, zwitterions, allenes). The electronic structures of these intermediates are also possible for the (heteroatom substituted) 1,2,4-cyclohexatriene and a model for their energetic sequence based on high-level multi-reference computations is proposed. In all three projects the application of multi-reference approaches is necessary to obtain a comprehensive picture of the reactivity and electronic structure but also shows up the limits inherently existing in the currently available programs with respect to the size of the molecules. In the second part, algorithms for a multi-reference Moller-Plesset perturbation theory (MR-MP2) program, designed to perform large-scale computations, were developed and implemented. The MR-MP2 approach represents the most cost-effective multireference ansatz and requires an efficient evaluation of the Hamilton matrix for which an algorithm is designed to instantly recognize only non-vanishing matrix elements and to employ the recurring interaction patterns of the Hamilton matrix. The direct construction of the Hamilton matrix is additionally parallelized to work on cluster environments.}, language = {en} } @phdthesis{Issler2024, author = {Issler, Kevin}, title = {Theory and simulation of ultrafast autodetachment dynamics and nonradiative relaxation in molecules}, doi = {10.25972/OPUS-35223}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352232}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this thesis, theoretical approaches for the simulation of electron detachment processes in molecules following vibrational or electronic excitation are developed and applied. These approaches are based on the quantum-classical surface-hopping methodology, in which nuclear motion is treated classically as an ensemble of trajectories in the potential of quantum-mechanically described electronic degrees of freedom.}, subject = {Theoretische Chemie}, language = {en} } @phdthesis{Hoche2023, author = {Hoche, Joscha}, title = {The life of an exciton: From ultrafast nonradiative relaxation to high quantum yield fluorescence}, doi = {10.25972/OPUS-31684}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-316844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis focuses on understanding and predicting processes in chromophores after electronic state excitation, particularly the impact on luminescence - the spontaneous emission of light. It considers the effect of processes preceding luminescence on emission properties, which are challenging to predict, especially in complex aggregates. For example, excitation energy transfer is a crucial process in understanding luminescence, as it allows the emission to occur from different molecular units than where the absorption occurs. This can lead to significant shifts in emission wavelength and fluorescence quantum yields. The thesis offers solutions to model this process effectively, understanding the impact of excitation energy and exciton coupling disorder on energy transfer rates and linking simulated energy transfer to experimental measurements. The work further explores excimer formation - an undesired luminescence loss channel due to its significant stabilization of the electronic state. Usually, the molecules obey a stacked conformation with parallel orientation to maximize the orbital overlap. This energetic lowering of the excited state can often result in trapping of the dimer in this state due to a deep minimum on the potential energy surface. The excimer formation dynamics, structural rearrangement, and its influence on singlet-correlated triplet pair states formation, critical for the singlet-fission process, have been extensively studied. The thesis also focuses on another luminescence loss channel triggered by conical intersections between the electronic ground and the first excited states. A new model is introduced to overcome limitations in current simulation methods, considering the solvent's electrostatic and frictional effects on the barriers. The model accurately describes merocyanine dyes' solvent-dependent photoluminescence quantum yields and characterizes all relaxation channels in different BODIPY oligomer series.}, subject = {Theoretische Chemie}, language = {en} } @phdthesis{Albert2018, author = {Albert, Julian}, title = {Quantum Studies on Low-Dimensional Coupled Electron-Nuclear Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161512}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In the context of quantum mechanical calculations, the properties of non-adiabatic coupling in a small system, the Shin-Metiu model, is investigated. The transition from adiabatic to non-adiabatic dynamics is elucidated in modifying the electron-nuclear interaction. This allows the comparison of weakly correlated electron-nuclear motion with the case where the strong correlations determine the dynamics. The studies of the model are extended to include spectroscopical transitions being present in two-dimensional and degenerate four-wave mixing spectroscopy. Furthermore, the quantum and classical time-evolution of the coupled motion in the complete electron-nuclear phase space is compared for the two coupling cases. Additionally, the numerically exact electron flux within the weak coupling case is compared to the Born-Oppenheimer treatment. In the last part of the thesis, the model is extended to two dimensions. The system then possesses potential energy surfaces which exhibit a typical 'Mexican hat'-like structure and a conical intersection in the adiabatic representation. Thus, it is possible to map properties of the system onto a vibronic coupling (Jahn-Teller) hamiltonian. Exact wave-packet propagations as well as nuclear wave-packet dynamics in the adiabatic and diabatic representation are performed.}, subject = {Theoretische Chemie}, language = {en} }