@article{ZhangLiuWangetal.2022, author = {Zhang, Chonghe and Liu, Xiaocui and Wang, Junyi and Ye, Qing}, title = {A Three-Dimensional Inorganic Analogue of 9,10-Diazido-9,10-Diboraanthracene: A Lewis Superacidic Azido Borane with Reactivity and Stability}, series = {Angewandte Chemie}, volume = {61}, journal = {Angewandte Chemie}, number = {36}, doi = {10.1002/anie.202205506}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318322}, year = {2022}, abstract = {Herein, we report the facile synthesis of a three-dimensional (3D) inorganic analogue of 9,10-diazido-9,10-dihydrodiboraantracene, which turned out to be a monomer in both the solid and solution state, and thermally stable up to 230 °C, representing a rare example of azido borane with boosted Lewis acidity and stability in one. Apart from the classical acid-base and Staudinger reactions, E-H bond activation (E=B, Si, Ge) was investigated. While the reaction with B-H (9-borabicyclo[3.3.1]nonane) led directly to the 1,1-addition on N\(_{α}\) upon N\(_{2}\) elimination, the Si-H (Et\(_{3}\)SiH, PhMe\(_{2}\)SiH) activation proceeded stepwise via 1,2-addition, with the key intermediates 5\(_{int}\) and 6\(_{int}\) being isolated and characterized. In contrast, the cooperative Ge-H was reversible and stayed at the 1,2-addition step.}, language = {en} } @article{ScherpfSchwarzScharfetal.2018, author = {Scherpf, Thorsten and Schwarz, Christopher and Scharf, Lennart T. and Zur, Jana-Alina and Helbig, Andeas and Gessner, Viktoria H.}, title = {Ylide-Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis}, series = {Angewandte Chemie - International Edition}, volume = {57}, journal = {Angewandte Chemie - International Edition}, number = {39}, doi = {10.1002/anie.201805372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228551}, pages = {12859-12864}, year = {2018}, abstract = {Phosphines are important ligands in homogenous catalysis and have been crucial for many advances, such as in cross-coupling, hydrofunctionalization, or hydrogenation reactions. Herein we report the synthesis and application of a novel class of phosphines bearing ylide substituents. These phosphines are easily accessible via different synthetic routes from commercially available starting materials. Owing to the extra donation from the ylide group to the phosphorus center the ligands are unusually electron-rich and can thus function as strong electron donors. The donor capacity surpasses that of commonly used phosphines and carbenes and can easily be tuned by changing the substitution pattern at the ylidic carbon atom. The huge potential of ylide-functionalized phosphines in catalysis is demonstrated by their use in gold catalysis. Excellent performance at low catalyst loadings under mild reaction conditions is thus seen in different types of transformations.}, language = {en} } @article{MatlerArrowsmithSchorretal.2021, author = {Matler, Alexander and Arrowsmith, Merle and Schorr, Fabian and Hermann, Alexander and Hofmann, Alexander and Lenczyk, Carsten and Braunschweig, Holger}, title = {Reactivity of Terminal Iron Borylenes and Bis(borylenes) with Carbodiimides: Cycloaddition, Metathesis, Insertion and C-H Activation Pathways}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {45}, doi = {10.1002/ejic.202100629}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257397}, pages = {4619-4631}, year = {2021}, abstract = {The reactions of carbodiimides with the iron arylborylene complex [Fe=BDur(CO)\(_{3}\)(PMe\(_{3}\))] (Dur=2,3,5,6-Me\(_{4}\)C\(_{6}\)H) and the iron bis(borylene) complex [Fe{=BDur}{=BN(SiMe\(_{3}\))\(_{2}\)}(CO)\(_{3}\)] yield a wide variety of temperature-dependent products, including known FeBNC and novel FeBNB metallacycles, complexes of N-heterocyclic boracarbene and spiro-boracarbene ligands and a unique 1,3,2,4-diazadiborolyl pianostool complex, characterized by NMR spectroscopy and X-ray crystallography. The product distributions can be rationalized by considering sequences of cycloaddition, metathesis, insertion, and C-H activation pathways mainly governed by sterics.}, language = {en} } @article{LiuMingLuoetal.2020, author = {Liu, Xiaocui and Ming, Wenbo and Luo, Xiaoling and Friedrich, Alexandra and Maier, Jan and Radius, Udo and Santos, Webster L. and Marder, Todd B.}, title = {Regio- and Stereoselective Synthesis of 1,1-Diborylalkenes via Br{\o}nsted Base-Catalyzed Mixed Diboration of Alkynyl Esters and Amides with BpinBdan}, series = {European Journal of Organic Chemistry}, volume = {2020}, journal = {European Journal of Organic Chemistry}, number = {13}, doi = {10.1002/ejoc.202000128}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214728}, pages = {1941 -- 1946}, year = {2020}, abstract = {The NaOtBu-catalyzed mixed 1,1-diboration of terminal alkynes using the unsymmetrical diboron reagent BpinBdan (pin = pinacolato; dan = 1,8-diaminonaphthalene) proceeds in a regio- and stereoselective fashion affording moderate to high yields of 1,1-diborylalkenes bearing orthogonal boron protecting groups. It is applicable to gram-scale synthesis without loss of yield or selectivity. The mixed 1,1-diborylalkene products can be utilized in Suzuki-Miyaura cross-coupling reactions which take place selectivly at the C-B site. DFT calculations suggest the NaOtBu-catalyzed mixed 1,1-diboration of alkynes occurs through deprotonation of the terminal alkyne, stepwise addition of BpinBdan to the terminal carbon followed by protonation with tBuOH. Experimentally observed selective formation of (Z)-diborylalkenes is supported by our theoretical studies.}, language = {en} } @article{KraftStanglKrauseetal.2017, author = {Kraft, Andreas and Stangl, Johannes and Krause, Ana-Maria and M{\"u}ller-Buschbaum, Klaus and Beuerle, Florian}, title = {Supramolecular frameworks based on [60]fullerene hexakisadducts}, series = {Beilstein Journal of Organic Chemistry}, volume = {13}, journal = {Beilstein Journal of Organic Chemistry}, doi = {10.3762/bjoc.13.1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171996}, pages = {1-9}, year = {2017}, abstract = {[60]Fullerene hexakisadducts possessing 12 carboxylic acid side chains form crystalline hydrogen-bonding frameworks in the solid state. Depending on the length of the linker between the reactive sites and the malonate units, the distance of the [60]fullerene nodes and thereby the spacing of the frameworks can be controlled and for the most elongated derivative, continuous channels are obtained within the structure. Stability, structural integrity and porosity of the material were investigated by powder X-ray diffraction, thermogravimetry and sorption measurements.}, language = {en} } @article{HorrerKrahfussLubitzetal.2020, author = {Horrer, G{\"u}nther and Krahfuß, Mirjam J. and Lubitz, Katharina and Krummenacher, Ivo and Braunschweig, Holger and Radius, Udo}, title = {N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Complexes of Titanium(IV) and Titanium(III)}, series = {European Journal of Inorganic Chemistry}, volume = {2020}, journal = {European Journal of Inorganic Chemistry}, number = {3}, doi = {10.1002/ejic.201901207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208725}, pages = {281-291}, year = {2020}, abstract = {The reaction of one and two equivalents of the N -heterocyclic carbene IMes [IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazolin-2-ylidene] or the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) [cAAC\(^{Me}\) = 1-(2,6-diisopropyl-phenyl)-3,3,5,5-tetra-methylpyrrolidin-2-ylidene] with [TiCl\(_{4}\)] in n -hexane results in the formation of mono- and bis-carbene complexes [TiCl\(_{4}\)(IMes)] 1 , [TiCl\(_{4}\)(IMes)2] 2 , [TiCl\(_{4}\)(cAAC\(^{Me}\))] 3 , and [TiCl\(_{4}\)(cAAC\(^{Me}\))\(_{2}\)] 4 , respectively. For comparison, the titanium(IV) NHC complex [TiCl\(_{4}\)(Ii Pr\(^{Me}\))] 5 (Ii Pr\(^{Me}\) = 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene) has been synthesized and structurally characterized. The reaction of [TiCl\(_{4}\)(IMes)] 1 with PMe\(_{3}\) affords the mixed substituted complex [TiCl\(_{4}\)(IMes)(PMe\(_{3}\))] 6 . The reactions of [TiCl\(_{3}\)(THF)\(_{3}\)] with two equivalents of the carbenes IMes and cAAC\(^{Me}\) in n -hexane lead to the clean formation of the titanium(III) complexes [TiCl\(_{3}\)(IMes)\(_{2}\)] 7 and [TiCl\(_{3}\)(cAAC\(^{Me}\))\(_{2}\)] 8 . Compounds 1 -8 have been completely characterized by elemental analysis, IR and multinuclear NMR spectroscopy and for 2 -5 , 7 and 8 by X-ray diffraction. Magnetometry in solution, EPR and UV/Vis spectroscopy and DFT calculations performed on 7 and 8 are indicative of a predominantly metal-centered d\(^{1}\)-radical in both cases.}, language = {en} } @article{HessKrummenacherDellermannetal.2021, author = {Heß, Merlin and Krummenacher, Ivo and Dellermann, Theresa and Braunschweig, Holger}, title = {Rhodium-Mediated Stoichiometric Synthesis of Mono-, Bi-, and Bis-1,2-Azaborinines: 1-Rhoda-3,2-azaboroles as Reactive Precursors}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {37}, doi = {10.1002/chem.202100795}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256830}, pages = {9503-9507}, year = {2021}, abstract = {A series of highly substituted 1,2-azaborinines, including a phenylene-bridged bis-1,2-azaborinine, was synthesized from the reaction of 1,2-azaborete rhodium complexes with variously substituted alkynes. 1-Rhoda-3,2-azaborole complexes, which are accessible by phosphine addition to the corresponding 1,2-azaborete complexes, were also found to be suitable precursors for the synthesis of 1,2-azaborinines and readily reacted with alkynyl-substituted 1,2-azaborinines to generate new regioisomers of bi-1,2-azaborinines, which feature directly connected aromatic rings. Their molecular structures, which can be viewed as boron-nitrogen isosteres of biphenyls, show nearly perpendicular 1,2-azaborinine rings. The new method using rhodacycles instead of 1,2-azaborete complexes as precursors is shown to be more effective, allowing the synthesis of a wider range of 1,2-azaborinines.}, language = {en} } @article{HermannFantuzziArrowsmithetal.2020, author = {Hermann, Alexander and Fantuzzi, Felipe and Arrowsmith, Merle and Zorn, Theresa and Krummenacher, Ivo and Ritschel, Benedikt and Radacki, Krzysztof and Engels, Bernd and Braunschweig, Holger}, title = {Oxidation, Coordination, and Nickel-Mediated Deconstruction of a Highly Electron-Rich Diboron Analogue of 1,3,5-Hexatriene}, series = {Angewandte Chemie, International Edition}, volume = {59}, journal = {Angewandte Chemie, International Edition}, number = {36}, doi = {10.1002/anie.202006131}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240652}, pages = {15717-15725}, year = {2020}, abstract = {The reductive coupling of an N-heterocyclic carbene (NHC) stabilized (dibromo)vinylborane yields a 1,2-divinyl- diborene, which, although isoelectronic to a 1,3,5-triene, displays no extended p conjugation because of twisting of the C\(_2\)B\(_2\)C\(_2\) chain. While this divinyldiborene coordinates to copper(I) and platinum(0) in an η\(^2\)-B\(_2\) and η\(^4\)-C\(_2\)B\(_2\) fashion, respectively, it undergoes a complex rearrangement to an η\(^4\)-1,3-diborete upon complexation with nickel(0).}, language = {en} } @article{BringmannOrtmannZagstetal.1992, author = {Bringmann, Gerhard and Ortmann, Thomas and Zagst, Rainer and Schoener, Bernd and Assi, Laurent Ake and Burschka, Christian}, title = {+/- Dioncophyllacine A, a naphthylisoquinoline alkaloid with a 4-methoxy substituent from the leaves of Triphyophyllum peltatum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31873}, year = {1992}, abstract = {The isolation and structure elucidation of rac-dioncophyllacine A from the leaves of Triphyophyllun peltatum, is described. Unlike all other naphthylisoquinoline alkaloids, this fully dehydrogenated representative has an additional methoxy group at C-4, the position of which is deduced from NOE results. Dioncophyllacine A has a 7,1' site of the biaryl axis, as in dioncophylline A. Its constitution is confirmed by an X-ray structure analysis, which shows that the crystalline form of this new alkaloid is racemic.}, subject = {Dioncophyllaceae}, language = {en} }