@article{JordanJansenMeffertetal.2021, author = {Jordan, Martin C. and Jansen, Hendrik and Meffert, Rainer H. and Heintel, Timo M.}, title = {Comparing porous tantalum fusion implants and iliac crest bone grafts for spondylodesis of thoracolumbar burst fractures: Prospectice Cohort study}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-96400-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261706}, year = {2021}, abstract = {The aim of this study was to compare two different techniques of performing one-level spondylodesis for thoracolumbar burst fractures using either an autologous iliac crest bone graft (ICBG) or a porous tantalum fusion implant (PTFI). In a prospective nonrandomized study, 44 patients (20 women, 24 men; average age 43.1 +/- 13.2 years) suffering from severe thoracolumbar burst fractures were treated with combined anterior-posterior stabilization. An ICBG was used in 21 cases, and a PTFI was used in the other 23 cases. A two-year clinical and radiographic follow-up was carried out. There were no statistically significant differences in age, sex, localization/classification of the fracture, or visual analog scale (VAS) before injury between the two groups. All 44 patients were followed up for an average period of 533 days (range 173-1567). The sagittal spinal profile was restored by an average of 11.1 degrees (ICBG) vs. 14.3 degrees (PTFI) (monosegmental Cobb angle). Loss of correction until the last follow-up tended to be higher in the patients treated with ICBG than in those treated with PTFI (mean: 2.8 degrees vs. 1.6 degrees). Furthermore, significantly better restoration of the sagittal profile was obtained with the PTFI than with the iliac bone graft at the long-term follow-up (mean: ICBG 7.8 degrees, PTFI 12.3 degrees; p < 0.005). Short-segment posterior instrumentation combined with anterior one-level spondylodesis using either an ICBG or a PTFI resulted in sufficient correction of posttraumatic segmental kyphosis. PTFI might be a good alternative for autologous bone grafting and prevent donor site morbidities.}, language = {en} } @article{PatzerKunzHuflageetal.2023, author = {Patzer, Theresa Sophie and Kunz, Andreas Steven and Huflage, Henner and Luetkens, Karsten Sebastian and Conrads, Nora and Gruschwitz, Philipp and Pannenbecker, Pauline and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Quantitative and qualitative image quality assessment in shoulder examinations with a first-generation photon-counting detector CT}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-35367-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357925}, year = {2023}, abstract = {Photon-counting detector (PCD) CT allows for ultra-high-resolution (UHR) examinations of the shoulder without requiring an additional post-patient comb filter to narrow the detector aperture. This study was designed to compare the PCD performance with a high-end energy-integrating detector (EID) CT. Sixteen cadaveric shoulders were examined with both scanners using dose-matched 120 kVp acquisition protocols (low-dose/full-dose: CTDI\(_{vol}\) = 5.0/10.0 mGy). Specimens were scanned in UHR mode with the PCD-CT, whereas EID-CT examinations were conducted in accordance with the clinical standard as "non-UHR". Reconstruction of EID data employed the sharpest kernel available for standard-resolution scans (ρ\(_{50}\) = 12.3 lp/cm), while PCD data were reconstructed with both a comparable kernel (11.8 lp/cm) and a sharper dedicated bone kernel (16.5 lp/cm). Six radiologists with 2-9 years of experience in musculoskeletal imaging rated image quality subjectively. Interrater agreement was analyzed by calculation of the intraclass correlation coefficient in a two-way random effects model. Quantitative analyses comprised noise recording and calculating signal-to-noise ratios based on attenuation measurements in bone and soft tissue. Subjective image quality was higher in UHR-PCD-CT than in EID-CT and non-UHR-PCD-CT datasets (all p < 0.001). While low-dose UHR-PCD-CT was considered superior to full-dose non-UHR studies on either scanner (all p < 0.001), ratings of low-dose non-UHR-PCD-CT and full-dose EID-CT examinations did not differ (p > 0.99). Interrater reliability was moderate, indicated by a single measures intraclass correlation coefficient of 0.66 (95\% confidence interval: 0.58-0.73; p < 0.001). Image noise was lowest and signal-to-noise ratios were highest in non-UHR-PCD-CT reconstructions at either dose level (p < 0.001). This investigation demonstrates that superior depiction of trabecular microstructure and considerable denoising can be realized without additional radiation dose by employing a PCD for shoulder CT imaging. Allowing for UHR scans without dose penalty, PCD-CT appears as a promising alternative to EID-CT for shoulder trauma assessment in clinical routine.}, language = {en} }