@article{KlokeSchreiberBoddenetal.2014, author = {Kloke, Vanessa and Schreiber, Rebecca S. and Bodden, Carina and M{\"o}llers, Julian and Ruhmann, Hanna and Kaiser, Sylvia and Lesch, Klaus-Peter and Sachser, Norbert and Lewejohann, Lars}, title = {Hope for the Best or Prepare for the Worst? Towards a Spatial Cognitive Bias Test for Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {8}, doi = {10.1371/journal.pone.0105431}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115569}, pages = {e105431}, year = {2014}, abstract = {Cognitive bias, the altered information processing resulting from the background emotional state of an individual, has been suggested as a promising new indicator of animal emotion. Comparable to anxious or depressed humans, animals in a putatively negative emotional state are more likely to judge an ambiguous stimulus as if it predicts a negative event, than those in positive states. The present study aimed to establish a cognitive bias test for mice based on a spatial judgment task and to apply it in a pilot study to serotonin transporter (5-HTT) knockout mice, a well-established mouse model for the study of anxiety- and depression-related behavior. In a first step, we validated that our setup can assess different expectations about the outcome of an ambiguous stimulus: mice having learned to expect something positive within a maze differed significantly in their behavior towards an unfamiliar location than animals having learned to expect something negative. In a second step, the use of spatial location as a discriminatory stimulus was confirmed by showing that mice interpret an ambiguous stimulus depending on its spatial location, with a position exactly midway between a positive and a negative reference point provoking the highest level of ambiguity. Finally, the anxiety- and depression-like phenotype of the 5-HTT knockout mouse model manifested - comparable to human conditions - in a trend for a negatively distorted interpretation of ambiguous information, albeit this effect was not statistically significant. The results suggest that the present cognitive bias test provides a useful basis to study the emotional state in mice, which may not only increase the translational value of animal models in the study of human affective disorders, but which is also a central objective of animal welfare research.}, language = {en} } @article{MeulePlatte2016, author = {Meule, Adrian and Platte, Petra}, title = {Attentional bias toward high-calorie food-cues and trait motor impulsivity interactively predict weight gain}, series = {Health Psychology Open}, journal = {Health Psychology Open}, doi = {10.1177/2055102916649585}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168504}, year = {2016}, abstract = {Strong bottom-up impulses and weak top-down control may interactively lead to overeating and, consequently, weight gain. In the present study, female university freshmen were tested at the start of the first semester and again at the start of the second semester. Attentional bias toward high- or low-calorie food-cues was assessed using a dot-probe paradigm and participants completed the Barratt Impulsiveness Scale. Attentional bias and motor impulsivity interactively predicted change in body mass index: motor impulsivity positively predicted weight gain only when participants showed an attentional bias toward high-calorie food-cues. Attentional and non-planning impulsivity were unrelated to weight change. Results support findings showing that weight gain is prospectively predicted by a combination of weak top-down control (i.e. high impulsivity) and strong bottom-up impulses (i.e. high automatic motivational drive toward high-calorie food stimuli). They also highlight the fact that only specific aspects of impulsivity are relevant in eating and weight regulation.}, language = {en} }