@article{RascheDuellMorgneretal.2013, author = {Rasche, Leo and Duell, Johannes and Morgner, Charlotte and Chatterjee, Manik and Hensel, Frank and Rosenwald, Andreas and Einsele, Hermann and Topp, Max S. and Br{\"a}ndlein, Stephanie}, title = {The Natural Human IgM Antibody PAT-SM6 Induces Apoptosis in Primary Human Multiple Myeloma Cells by Targeting Heat Shock Protein GRP78}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0063414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130125}, pages = {e63414}, year = {2013}, abstract = {In contrast to other haematological malignancies, targeted immunotherapy has not entered standard treatment regimens for de novo or relapsed multiple myeloma (MM) yet. While a number of IgG-formatted monoclonal antibodies are currently being evaluated in clinical trials in MM, our study aimed to investigate whether the fully human IgM monoclonal antibody PAT-SM6 that targets a tumour-specific variant of the heat shock protein GRP78 might be an attractive candidate for future immunotherapeutic approaches. We here show that GRP78 is stably and consistently expressed on the surface on tumour cells from patients with de novo, but also relapsed MM and that binding of PAT-SM6 to MM cells can specifically exert cytotoxic effects on malignant plasma cells, whereas non-malignant cells are not targeted. We demonstrate that the induction of apoptosis and, to a lesser extent, complement dependent cytotoxicity is the main mode of action of PAT-SM6, whereas antibody dependent cellular cytotoxicity does not appear to contribute to the cytotoxic properties of this antibody. Given the favourable safety profile of PAT-SM6 in monkeys, but also in a recent phase I trial in patients with malignant melanoma, our results form the basis for a planned phase I study in patients with relapsed MM.}, language = {en} } @article{LueckerathLapaSpahmannetal.2013, author = {L{\"u}ckerath, Katharina and Lapa, Constantin and Spahmann, Annika and J{\"o}rg, Gerhard and Samnick, Samuel and Rosenwald, Andreas and Einsele, Herrmann and Knop, Stefan and Buck, Andreas}, title = {Targeting Paraprotein Biosynthesis for Non-Invasive Characterization of Myeloma Biology}, doi = {10.1371/journal.pone.0084840}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111319}, year = {2013}, abstract = {Purpose Multiple myeloma is a hematologic malignancy originating from clonal plasma cells. Despite effective therapies, outcomes are highly variable suggesting marked disease heterogeneity. The role of functional imaging for therapeutic management of myeloma, such as positron emission tomography with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG-PET), remains to be determined. Although some studies already suggested a prognostic value of 18F-FDG-PET, more specific tracers addressing hallmarks of myeloma biology, e.g. paraprotein biosynthesis, are needed. This study evaluated the amino acid tracers L-methyl-[11C]-methionine (11C-MET) and [18F]-fluoroethyl-L-tyrosine (18F-Fet) for their potential to image myeloma and to characterize tumor heterogeneity. Experimental Design To study the utility of 11C-MET, 18F-Fet and 18F-FDG for myeloma imaging, time activity curves were compared in various human myeloma cell lines (INA-6, MM1.S, OPM-2) and correlated to cell-biological characteristics, such as marker gene expression and immunoglobulin levels. Likewise, patient-derived CD138+ plasma cells were characterized regarding uptake and biomedical features. Results Using myeloma cell lines and patient-derived CD138+ plasma cells, we found that the relative uptake of 11C-MET exceeds that of 18F-FDG 1.5- to 5-fold and that of 18F-Fet 7- to 20-fold. Importantly, 11C-MET uptake significantly differed between cell types associated with worse prognosis (e.g. t(4;14) in OPM-2 cells) and indolent ones and correlated with intracellular immunoglobulin light chain and cell surface CD138 and CXCR4 levels. Direct comparison of radiotracer uptake in primary samples further validated the superiority of 11C-MET. Conclusion These data suggest that 11C-MET might be a versatile biomarker for myeloma superior to routine functional imaging with 18F-FDG regarding diagnosis, risk stratification, prognosis and discrimination of tumor subtypes.}, language = {en} } @article{SbieraRonchiLeichetal.2013, author = {Sbiera, Silviu and Ronchi, Cristina L. and Leich, Ellen and Henzel, Katharina and Rosenwald, Andreas and Allolio, Bruno and Fassnacht, Martin}, title = {Single Nucleotide Polymorphism Array Profiling of Adrenocortical Tumors - Evidence for an Adenoma Carcinoma Sequence?}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0073959}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97218}, year = {2013}, abstract = {Adrenocortical tumors consist of benign adenomas and highly malignant carcinomas with a still incompletely understood pathogenesis. A total of 46 adrenocortical tumors (24 adenomas and 22 carcinomas) were investigated aiming to identify novel genes involved in adrenocortical tumorigenesis. High-resolution single nucleotide polymorphism arrays (Affymetrix) were used to detect copy number alterations (CNAs) and copy neutral losses of heterozygosity (cnLOH). Genomic clustering showed good separation between adenomas and carcinomas, with best partition including only chromosome 5, which was highly amplified in 17/22 malignant tumors. The malignant tumors had more relevant genomic aberrations than benign tumors, such as a higher median number of recurrent CNA (2631 vs 94), CNAs >100 Kb (62.5 vs 7) and CN losses (72.5 vs 5.5), and a higher percentage of samples with cnLOH (91\% vs 29\%). Within the carcinoma cohort, a precise genetic pattern (i.e. large gains at chr 5, 7, 12, and 19, and losses at chr 1, 2, 13, 17, and 22) was associated with a better prognosis (overall survival: 72.2 vs 35.4 months, P=0.063). Interestingly, >70\% of gains frequent in beningn were also present in malignant tumors. Notch signaling was the most frequently involved pathway in both tumor entities. Finally, a CN gain at imprinted "IGF2" locus chr 11p15.5 appeared to be an early alteration in a multi-step tumor progression, followed by the loss of one or two alleles, associated with increased IGF2 expression, only in carcinomas. Our study serves as database for the identification of genes and pathways, such as Notch signaling, which could be involved in the pathogenesis of adrenocortical tumors. Using these data, we postulate an adenoma-carcinoma sequence for these tumors.}, language = {en} } @article{TimofeevSchlerethWanzeletal.2013, author = {Timofeev, Oleg and Schlereth, Katharina and Wanzel, Michael and Braun, Attila and Nieswandt, Bernhard and Pagenstecher, Axel and Rosenwald, Andreas and Els{\"a}sser, Hans-Peter and Stiewe, Thorsten}, title = {p53 DNA Binding Cooperativity Is Essential for Apoptosis and Tumor Suppression In Vivo}, series = {Cell Reports}, volume = {3}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2013.04.008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122168}, pages = {1512-1525}, year = {2013}, abstract = {Four molecules of the tumor suppressor p53 assemble to cooperatively bind proapoptotic target genes. The structural basis for cooperativity consists of interactions between adjacent DNA binding domains. Mutations at the interaction interface that compromise cooperativity were identified in cancer patients, suggesting a requirement of cooperativity for tumor suppression. We report on an analysis of cooperativity mutant p53(E177R) mice. Apoptotic functions of p53 triggered by DNA damage and oncogenes were abolished in these mice, whereas functions in cell-cycle control, senescence, metabolism, and antioxidant defense were retained and were sufficient to suppress development of spontaneous T cell lymphoma. Cooperativity mutant mice are nevertheless highly cancer prone and susceptible to different oncogene-induced tumors. Our data underscore the relevance of DNA binding cooperativity for p53-dependent apoptosis and tumor suppression and highlight cooperativity mutations as a class of p53 mutations that result in a selective loss of apoptotic functions due to an altered quaternary structure of the p53 tetramer.}, language = {en} } @article{BeilhackChopraKrausetal.2013, author = {Beilhack, Andreas and Chopra, Martin and Kraus, Sabrina and Schwinn, Stefanie and Ritz, Miriam and Mattenheimer, Katharina and Mottok, Anja and Rosenwald, Andreas and Einsele, Hermann}, title = {Non-Invasive Bioluminescence Imaging to Monitor the Immunological Control of a Plasmablastic Lymphoma-Like B Cell Neoplasia after Hematopoietic Cell Transplantation}, doi = {10.1371/journal.pone.0081320}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111341}, year = {2013}, abstract = {To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Ighatm1(Myc)Janz/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Ighatm1(Myc)Janz/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies.}, language = {en} } @article{KimGrimmigGrimmetal.2013, author = {Kim, Mia and Grimmig, Tanja and Grimm, Martin and Lazariotou, Maria and Meier, Eva and Rosenwald, Andreas and Tsaur, Igor and Blaheta, Roman and Heemann, Uwe and Germer, Christoph-Thomas and Waaga-Gasser, Ana Maria and Gasser, Martin}, title = {Expression of Foxp3 in Colorectal Cancer but Not in Treg Cells Correlates with Disease Progression in Patients with Colorectal Cancer}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0053630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130340}, pages = {e53630}, year = {2013}, abstract = {Background Measles virus (MV) causes T cell suppression by interference with phosphatidylinositol-3-kinase (PI3K) activation. We previously found that this interference affected the activity of splice regulatory proteins and a T cell inhibitory protein isoform was produced from an alternatively spliced pre-mRNA. Hypothesis Differentially regulated and alternatively splice variant transcripts accumulating in response to PI3K abrogation in T cells potentially encode proteins involved in T cell silencing. Methods To test this hypothesis at the cellular level, we performed a Human Exon 1.0 ST Array on RNAs isolated from T cells stimulated only or stimulated after PI3K inhibition. We developed a simple algorithm based on a splicing index to detect genes that undergo alternative splicing (AS) or are differentially regulated (RG) upon T cell suppression. Results Applying our algorithm to the data, 9\% of the genes were assigned as AS, while only 3\% were attributed to RG. Though there are overlaps, AS and RG genes differed with regard to functional regulation, and were found to be enriched in different functional groups. AS genes targeted extracellular matrix (ECM)-receptor interaction and focal adhesion pathways, while RG genes were mainly enriched in cytokine-receptor interaction and Jak-STAT. When combined, AS/RG dependent alterations targeted pathways essential for T cell receptor signaling, cytoskeletal dynamics and cell cycle entry. Conclusions PI3K abrogation interferes with key T cell activation processes through both differential expression and alternative splicing, which together actively contribute to T cell suppression.}, language = {en} } @article{SchlerethHeylKrampitzetal.2013, author = {Schlereth, Katharina and Heyl, Charlotte and Krampitz, Anna-Maria and Mernberger, Marco and Finkernagel, Florian and Scharfe, Maren and Jarek, Michael and Leich, Ellen and Rosenwald, Andreas and Stiewe, Thorsten}, title = {Characterization of the p53 Cistrome - DNA Binding Cooperativity Dissects p53's Tumor Suppressor Functions}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {8}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127579}, pages = {e1003726}, year = {2013}, abstract = {p53 protects us from cancer by transcriptionally regulating tumor suppressive programs designed to either prevent the development or clonal expansion of malignant cells. How p53 selects target genes in the genome in a context-and tissue-specific manner remains largely obscure. There is growing evidence that the ability of p53 to bind DNA in a cooperative manner prominently influences target gene selection with activation of the apoptosis program being completely dependent on DNA binding cooperativity. Here, we used ChIP-seq to comprehensively profile the cistrome of p53 mutants with reduced or increased cooperativity. The analysis highlighted a particular relevance of cooperativity for extending the p53 cistrome to non-canonical binding sequences characterized by deletions, spacer insertions and base mismatches. Furthermore, it revealed a striking functional separation of the cistrome on the basis of cooperativity; with low cooperativity genes being significantly enriched for cell cycle and high cooperativity genes for apoptotic functions. Importantly, expression of high but not low cooperativity genes was correlated with superior survival in breast cancer patients. Interestingly, in contrast to most p53-activated genes, p53-repressed genes did not commonly contain p53 binding elements. Nevertheless, both the degree of gene activation and repression were cooperativity-dependent, suggesting that p53-mediated gene repression is largely indirect and mediated by cooperativity-dependently transactivated gene products such as CDKN1A, E2F7 and non-coding RNAs. Since both activation of apoptosis genes with non-canonical response elements and repression of pro-survival genes are crucial for p53's apoptotic activity, the cistrome analysis comprehensively explains why p53-induced apoptosis, but not cell cycle arrest, strongly depends on the intermolecular cooperation of p53 molecules as a possible safeguard mechanism protecting from accidental cell killing.}, language = {en} } @article{HuangBelharazemLietal.2013, author = {Huang, Bei and Belharazem, Djeda and Li, Li and Kneitz, Susanne and Schnabel, Philipp A. and Rieker, Ralf J. and K{\"o}rner, Daniel and Nix, Wilfried and Schalke, Berthold and M{\"u}ller-Hermelink, Hans Konrad and Ott, German and Rosenwald, Andreas and Str{\"o}bel, Philipp and Marx, Alexander}, title = {Anti-apoptotic signature in thymic squamous cell carcinomas - functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c}, series = {Frontiers in Oncology}, volume = {3}, journal = {Frontiers in Oncology}, number = {316}, doi = {10.3389/fonc.2013.00316}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132214}, year = {2013}, abstract = {The molecular pathogenesis of thymomas and thymic arcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important.This made us re-analyze historic expression data obtained in a spectrumof thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.}, language = {en} }