@article{KellerGrimmerSteffanDewenter2013, author = {Keller, Alexander and Grimmer, Gudrun and Steffan-Dewenter, Ingolf}, title = {Diverse Microbiota Identified in Whole Intact Nest Chambers of the Red Mason Bee Osmia bicornis (Linnaeus 1758)}, series = {PLoS One}, journal = {PLoS One}, doi = {10.1371/journal.pone.0078296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97305}, year = {2013}, abstract = {Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics.}, language = {en} } @article{UteReisbergHildebrandtetal.2013, author = {Ute, Hentschel and Reisberg, Eva E. and Hildebrandt, Ulrich and Riederer, Markus}, title = {Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0078613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96699}, year = {2013}, abstract = {The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed "core" community) while others were positively or negatively affected by the wax mutant phenotype (termed "plant line-specific" community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria.}, language = {en} }