@article{JordanJaeckleScheidtetal.2021, author = {Jordan, Martin C. and J{\"a}ckle, Veronika and Scheidt, Sebastian and Gilbert, Fabian and H{\"o}lscher-Doht, Stefanie and Erg{\"u}n, S{\"u}leyman and Meffert, Rainer H. and Heintel, Timo M.}, title = {Trans-obturator cable fixation of open book pelvic injuries}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-92755-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261212}, year = {2021}, abstract = {Operative treatment of ruptured pubic symphysis by plating is often accompanied by complications. Trans-obturator cable fixation might be a more reliable technique; however, have not yet been tested for stabilization of ruptured pubic symphysis. This study compares symphyseal trans-obturator cable fixation versus plating through biomechanical testing and evaluates safety in a cadaver experiment. APC type II injuries were generated in synthetic pelvic models and subsequently separated into three different groups. The anterior pelvic ring was fixed using a four-hole steel plate in Group A, a stainless steel cable in Group B, and a titan band in Group C. Biomechanical testing was conducted by a single-leg-stance model using a material testing machine under physiological load levels. A cadaver study was carried out to analyze the trans-obturator surgical approach. Peak-to-peak displacement, total displacement, plastic deformation and stiffness revealed a tendency for higher stability for trans-obturator cable/band fixation but no statistical difference to plating was detected. The cadaver study revealed a safe zone for cable passage with sufficient distance to the obturator canal. Trans-obturator cable fixation has the potential to become an alternative for symphyseal fixation with less complications.}, language = {en} } @article{LuetkensErguenHuflageetal.2021, author = {Luetkens, Karsten Sebastian and Erg{\"u}n, S{\"u}leyman and Huflage, Henner and Kunz, Andreas Steven and Gietzen, Carsten Herbert and Conrads, Nora and Pennig, Lenhard and Goertz, Lukas and Bley, Thorsten Alexander and Gassenmaier, Tobias and Grunz, Jan-Peter}, title = {Dose reduction potential in cone-beam CT imaging of upper extremity joints with a twin robotic x-ray system}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-99748-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270429}, year = {2021}, abstract = {Cone-beam computed tomography is a powerful tool for 3D imaging of the appendicular skeleton, facilitating detailed visualization of bone microarchitecture. This study evaluated various combinations of acquisition and reconstruction parameters for the cone-beam CT mode of a twin robotic x-ray system in cadaveric wrist and elbow scans, aiming to define the best possible trade-off between image quality and radiation dose. Images were acquired with different combinations of tube voltage and tube current-time product, resulting in five scan protocols with varying volume CT dose indices: full-dose (FD; 17.4 mGy), low-dose (LD; 4.5 mGy), ultra-low-dose (ULD; 1.15 mGy), modulated low-dose (mLD; 0.6 mGy) and modulated ultra-low-dose (mULD; 0.29 mGy). Each set of projection data was reconstructed with three convolution kernels (very sharp [Ur77], sharp [Br69], intermediate [Br62]). Five radiologists subjectively assessed the image quality of cortical bone, cancellous bone and soft tissue using seven-point scales. Irrespective of the reconstruction kernel, overall image quality of every FD, LD and ULD scan was deemed suitable for diagnostic use in contrast to mLD (very sharp/sharp/intermediate: 60/55/70\%) and mULD (0/3/5\%). Superior depiction of cortical and cancellous bone was achieved in FD\(_{Ur77}\) and LD\(_{Ur77}\) examinations (p < 0.001) with LD\(_{Ur77}\) scans also providing favorable bone visualization compared to FD\(_{Br69}\) and FD\(_{Br62}\) (p < 0.001). Fleiss' kappa was 0.618 (0.594-0.641; p < 0.001), indicating substantial interrater reliability. In this study, we demonstrate that considerable dose reduction can be realized while maintaining diagnostic image quality in upper extremity joint scans with the cone-beam CT mode of a twin robotic x-ray system. Application of sharper convolution kernels for image reconstruction facilitates superior display of bone microarchitecture.}, language = {en} }