@article{WeisseHeddergottHeydtetal.2012, author = {Weiße, Sebastian and Heddergott, Niko and Heydt, Matthias and Pfl{\"a}sterer, Daniel and Maier, Timo and Haraszti, Tamas and Grunze, Michael and Engstler, Markus and Rosenhahn, Axel}, title = {A Quantitative 3D Motility Analysis of Trypanosoma brucei by Use of Digital In-line Holographic Microscopy}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {5}, doi = {10.1371/journal.pone.0037296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130666}, pages = {e37296}, year = {2012}, abstract = {We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change in their mode of swimming.}, language = {en} } @article{GrabenhenrichReichFischeretal.2014, author = {Grabenhenrich, Linus B. and Reich, Andreas and Fischer, Felix and Zepp, Fred and Forster, Johannes and Schuster, Antje and Bauer, Carl-Peter and Bergmann, Renate L. and Bergmann, Karl E. and Wahn, Ulrich and Keil, Thomas and Lau, Susanne}, title = {The Novel 10-Item Asthma Prediction Tool: External Validation in the German MAS Birth Cohort}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {12}, issn = {1932-6203}, doi = {10.1371/journal.pone.0115852}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114202}, pages = {e115852}, year = {2014}, abstract = {Background: A novel non-invasive asthma prediction tool from the Leicester Cohort, UK, forecasts asthma at age 8 years based on 10 predictors assessed in early childhood, including current respiratory symptoms, eczema, and parental history of asthma. Objective: We aimed to externally validate the proposed asthma prediction method in a German birth cohort. Methods: The MAS-90 study (Multicentre Allergy Study) recorded details on allergic diseases prospectively in about yearly follow-up assessments up to age 20 years in a cohort of 1,314 children born 1990. We replicated the scoring method from the Leicester cohort and assessed prediction, performance and discrimination. The primary outcome was defined as the combination of parent-reported wheeze and asthma drugs (both in last 12 months) at age 8. Sensitivity analyses assessed model performance for outcomes related to asthma up to age 20 years. Results: For 140 children parents reported current wheeze or cough at age 3 years. Score distribution and frequencies of later asthma resembled the Leicester cohort: 9\% vs. 16\% (MAS-90 vs. Leicester) of children at low risk at 3 years had asthma at 8 years, at medium risk 45\% vs. 48\%. Performance of the asthma prediction tool in the MAS-90 cohort was similar (Brier score 0.22 vs. 0.23) and discrimination slightly better than in the original cohort (area under the curve, AUC 0.83 vs. 0.78). Prediction and discrimination were robust against changes of inclusion criteria, scoring and outcome definitions. The secondary outcome 'physicians' diagnosed asthma at 20 years' showed the highest discrimination (AUC 0.89). Conclusion: The novel asthma prediction tool from the Leicester cohort, UK, performed well in another population, a German birth cohort, supporting its use and further development as a simple aid to predict asthma risk in clinical settings.}, language = {en} } @article{TimmermansvanderTolTimmermansetal.2015, author = {Timmermans, Wim J. and van der Tol, Christiaan and Timmermans, Joris and Ucer, Murat and Chen, Xuelong and Alonso, Luis and Moreno, Jose and Carrara, Arnaud and Lopez, Ramon and Fernando de la Cruz, Tercero and Corcoles, Horacio L. and de Miguel, Eduardo and Sanchez, Jose A. G. and Perez, Irene and Belen, Perez and Munoz, Juan-Carlos J. and Skokovic, Drazen and Sobrino, Jose and Soria, Guillem and MacArthur, Alasdair and Vescovo, Loris and Reusen, Ils and Andreu, Ana and Burkart, Andreas and Cilia, Chiara and Contreras, Sergio and Corbari, Chiara and Calleja, Javier F. and Guzinski, Radoslaw and Hellmann, Christine and Herrmann, Ittai and Kerr, Gregoire and Lazar, Adina-Laura and Leutner, Benjamin and Mendiguren, Gorka and Nasilowska, Sylwia and Nieto, Hector and Pachego-Labrador, Javier and Pulanekar, Survana and Raj, Rahul and Schikling, Anke and Siegmann, Bastian and von Bueren, Stefanie and Su, Zhongbo (Bob)}, title = {An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign}, series = {Acta Geophysica}, volume = {63}, journal = {Acta Geophysica}, number = {6}, doi = {10.2478/s11600-014-0254-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136491}, pages = {1465-1484}, year = {2015}, abstract = {The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.}, language = {en} } @article{DuerigGudmundssonKarmannetal.2015, author = {D{\"u}rig, Tobias and Gudmundsson, Magn{\´u}s Tumi and Karmann, Sven and Zimanowski, Bernd and Dellino, Pierfrancesco and Rietze, Martin and B{\"u}ttner, Ralf}, title = {Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition-a case study of the 2010 eruption of Eyjafjallaj{\"o}kull, Iceland}, series = {Earth, Planets and Space}, volume = {67}, journal = {Earth, Planets and Space}, number = {180}, doi = {10.1186/s40623-015-0351-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138635}, year = {2015}, abstract = {The 2010 eruption of Eyjafjallajokull volcano was characterized by pulsating activity. Discrete ash bursts merged at higher altitude and formed a sustained quasi-continuous eruption column. High-resolution near-field videos were recorded on 8-10 May, during the second explosive phase of the eruption, and supplemented by contemporary aerial observations. In the observed period, pulses occurred at intervals of 0.8 to 23.4 s (average, 4.2 s). On the basis of video analysis, the pulse volume and the velocity of the reversely buoyant jets that initiated each pulse were determined. The expansion history of jets was tracked until the pulses reached the height of transition from a negatively buoyant jet to a convective buoyant plume about 100 m above the vent. Based on the assumption that the density of the gas-solid mixture making up the pulse approximates that of the surrounding air at the level of transition from the jet to the plume, a mass flux ranging between 2.2 and 3.5 . 10\(^4\) kg/s was calculated. This mass eruption rate is in good agreement with results obtained with simple models relating plume height with mass discharge at the vent. Our findings indicate that near-field measurements of eruption source parameters in a pulsating eruption may prove to be an effective monitoring tool. A comparison of the observed pulses with those generated in calibrated large-scale experiments reveals very similar characteristics and suggests that the analysis of near-field sensors could in the future help to constrain the triggering mechanism of explosive eruptions.}, language = {en} } @article{KarlDandekar2015, author = {Karl, Stefan and Dandekar, Thomas}, title = {Convergence behaviour and control in non-linear biological networks}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {09746}, doi = {10.1038/srep09746}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148510}, year = {2015}, abstract = {Control of genetic regulatory networks is challenging to define and quantify. Previous control centrality metrics, which aim to capture the ability of individual nodes to control the system, have been found to suffer from plausibility and applicability problems. Here we present a new approach to control centrality based on network convergence behaviour, implemented as an extension of our genetic regulatory network simulation framework Jimena (http://stefan-karl.de/jimena). We distinguish three types of network control, and show how these mathematical concepts correspond to experimentally verified node functions and signalling pathways in immunity and cell differentiation: Total control centrality quantifies the impact of node mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signalling cascades (e.g. src kinase or Jak/Stat pathways). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Surveying random scale-free networks and biological networks, we find that control of the network resides in few high degree driver nodes and networks can be controlled best if they are sparsely connected.}, language = {en} }