@article{CanessaPozziArnulfoetal.2016, author = {Canessa, Andrea and Pozzi, Nicol{\`o} G. and Arnulfo, Gabriele and Brumberg, Joachim and Reich, Martin M. and Pezzoli, Gianni and Ghilardi, Maria F. and Matthies, Cordula and Steigerwald, Frank and Volkmann, Jens and Isaias, Ioannis U.}, title = {Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson's Disease}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {611}, doi = {10.3389/fnhum.2016.00611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164061}, year = {2016}, abstract = {Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remains unclear. We recorded local field potential (LFP) activity from the subthalamic nucleus (STN) and high-density electroencephalography (EEG) signals in four patients with Parkinson's disease (PD) off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation (DBS) device at 4 months after surgery. Three patients also performed a single-photon computed tomography (SPECT) with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization (ERD) followed by a rebound after movement termination event-related synchronization (ERS) of oscillatory beta activity in the STN and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement.}, language = {en} } @article{MockeWellerFringsetal.2020, author = {Mocke, Viola and Weller, Lisa and Frings, Christian and Rothermund, Klaus and Kunde, Wilfried}, title = {Task relevance determines binding of effect features in action planning}, series = {Attention, Perception, \& Psychophysics}, volume = {82}, journal = {Attention, Perception, \& Psychophysics}, issn = {1943-3921}, doi = {10.3758/s13414-020-02123-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231906}, pages = {3811-3831}, year = {2020}, abstract = {Action planning can be construed as the temporary binding of features of perceptual action effects. While previous research demonstrated binding for task-relevant, body-related effect features, the role of task-irrelevant or environment-related effect features in action planning is less clear. Here, we studied whether task-relevance or body-relatedness determines feature binding in action planning. Participants planned an action A, but before executing it initiated an intermediate action B. Each action relied on a body-related effect feature (index vs. middle finger movement) and an environment-related effect feature (cursor movement towards vs. away from a reference object). In Experiments 1 and 2, both effects were task-relevant. Performance in action B suffered from partial feature overlap with action A compared to full feature repetition or alternation, which is in line with binding of both features while planning action A. Importantly, this cost disappeared when all features were available but only body-related features were task-relevant (Experiment 3). When only the environment-related effect of action A was known in advance, action B benefitted when it aimed at the same (vs. a different) environment-related effect (Experiment 4). Consequently, the present results support the idea that task relevance determines whether binding of body-related and environment-related effect features takes place while the pre-activation of environment-related features without binding them primes feature-overlapping actions.}, language = {en} } @article{KirschKundeHerbort2021, author = {Kirsch, Wladimir and Kunde, Wilfried and Herbort, Oliver}, title = {Impact of proprioception on the perceived size and distance of external objects in a virtual action task}, series = {Psychonomic Bulletin \& Review}, volume = {28}, journal = {Psychonomic Bulletin \& Review}, number = {4}, issn = {1531-5320}, doi = {10.3758/s13423-021-01915-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273235}, pages = {1191-1201}, year = {2021}, abstract = {Previous research has revealed changes in the perception of objects due to changes of object-oriented actions. In present study, we varied the arm and finger postures in the context of a virtual reaching and grasping task and tested whether this manipulation can simultaneously affect the perceived size and distance of external objects. Participants manually controlled visual cursors, aiming at reaching and enclosing a distant target object, and judged the size and distance of this object. We observed that a visual-proprioceptive discrepancy introduced during the reaching part of the action simultaneously affected the judgments of target distance and of target size (Experiment 1). A related variation applied to the grasping part of the action affected the judgments of size, but not of distance of the target (Experiment 2). These results indicate that perceptual effects observed in the context of actions can directly arise through sensory integration of multimodal redundant signals and indirectly through perceptual constancy mechanisms.}, language = {en} } @article{PerniaAndradeWengerEspositoetal.2021, author = {Pern{\´i}a-Andrade, Alejandro J. and Wenger, Nikolaus and Esposito, Maria S. and Tovote, Philip}, title = {Circuits for State-Dependent Modulation of Locomotion}, series = {Frontiers in Human Neuroscience}, volume = {15}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2021.745689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249995}, year = {2021}, abstract = {Brain-wide neural circuits enable bi- and quadrupeds to express adaptive locomotor behaviors in a context- and state-dependent manner, e.g., in response to threats or rewards. These behaviors include dynamic transitions between initiation, maintenance and termination of locomotion. Advances within the last decade have revealed an intricate coordination of these individual locomotion phases by complex interaction of multiple brain circuits. This review provides an overview of the neural basis of state-dependent modulation of locomotion initiation, maintenance and termination, with a focus on insights from circuit-centered studies in rodents. The reviewed evidence indicates that a brain-wide network involving excitatory circuit elements connecting cortex, midbrain and medullary areas appears to be the common substrate for the initiation of locomotion across different higher-order states. Specific network elements within motor cortex and the mesencephalic locomotor region drive the initial postural adjustment and the initiation of locomotion. Microcircuits of the basal ganglia, by implementing action-selection computations, trigger goal-directed locomotion. The initiation of locomotion is regulated by neuromodulatory circuits residing in the basal forebrain, the hypothalamus, and medullary regions such as locus coeruleus. The maintenance of locomotion requires the interaction of an even larger neuronal network involving motor, sensory and associative cortical elements, as well as defined circuits within the superior colliculus, the cerebellum, the periaqueductal gray, the mesencephalic locomotor region and the medullary reticular formation. Finally, locomotor arrest as an important component of defensive emotional states, such as acute anxiety, is mediated via a network of survival circuits involving hypothalamus, amygdala, periaqueductal gray and medullary premotor centers. By moving beyond the organizational principle of functional brain regions, this review promotes a circuit-centered perspective of locomotor regulation by higher-order states, and emphasizes the importance of individual network elements such as cell types and projection pathways. The realization that dysfunction within smaller, identifiable circuit elements can affect the larger network function supports more mechanistic and targeted therapeutic intervention in the treatment of motor network disorders.}, language = {en} } @article{NeszmelyiWellerKundeetal.2022, author = {Neszm{\´e}lyi, Bence and Weller, Lisa and Kunde, Wilfried and Pfister, Roland}, title = {Social action effects: representing predicted partner responses in social interactions}, series = {Frontiers in Human Neuroscience}, volume = {16}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2022.837495}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276609}, year = {2022}, abstract = {The sociomotor framework outlines a possible role of social action effects on human action control, suggesting that anticipated partner reactions are a major cue to represent, select, and initiate own body movements. Here, we review studies that elucidate the actual content of social action representations and that explore factors that can distinguish action control processes involving social and inanimate action effects. Specifically, we address two hypotheses on how the social context can influence effect-based action control: first, by providing unique social features such as body-related, anatomical codes, and second, by orienting attention towards any relevant feature dimensions of the action effects. The reviewed empirical work presents a surprisingly mixed picture: while there is indirect evidence for both accounts, previous studies that directly addressed the anatomical account showed no signs of the involvement of genuinely social features in sociomotor action control. Furthermore, several studies show evidence against the differentiation of social and non-social action effect processing, portraying sociomotor action representations as remarkably non-social. A focus on enhancing the social experience in future studies should, therefore, complement the current database to establish whether such settings give rise to the hypothesized influence of social context.}, language = {en} }