@article{PaakkariPaakkariFeuersteinetal.1992, author = {Paakkari, P. and Paakkari, I. and Feuerstein, G. and Sir{\´e}n, Anna-Leena}, title = {Evidence for differential opioid µ\(_1\)- and µ\(_2\)-receptor regulation of heart rate in the conscious rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63017}, year = {1992}, abstract = {The possibility that \(\mu\)Opioid-induced tachycardia and bradycardia could be mediated by different subtypes of the \(\mu\)·receptor was studied in conscious Sprague-Dawley rats. The selective \(\mu\)·receptor agonist dermorphin and its analog, TAPS (Tyr-o-Arg-Phe-sarcosine), a putative \(\mu _1\)-receptor agonist, were given centrally. Tyr-o-Arg-Phe-sarcosine increased the heart rate, the response being inversely correlated to the dose (an increase of 71 ± 22, 49 ± 14 and 30 ± 17 beats/min at doses of 0.3, 3 and 30 pmol, respectively). Dermorphin induced less clear changes in heart rate (maximum increase of 39 ± 14 beats/min at the dose of 1 pmol). Aftertreatment with the Jl 1-selective antagonist naloxonazine (NAZ), TAPS 30 pmol and dennorphin I pmol decreased heart rate by -22 ± 10 and -24 ± 7 bpm, respectively. The bradycardic effect oflarger doses of dennorphin was potentiated by NAZ (from -25 ± 8 to -97 ± 22 bpm) but abolished by the non-selective antagonist naloxone. These data suggest that the high affinity \(\mu _1\)-opioid receptors mediate tachycardic responses and \(\mu _2\)-receptors mediate bradycardic responses.}, subject = {Neurobiologie}, language = {en} } @article{ProttengeierKoutsilieriScheller2014, author = {Prottengeier, Johannes and Koutsilieri, Eleni and Scheller, Carsten}, title = {The effects of opioids on HIV reactivation in latently-infected T-lymphoblasts}, series = {AIDS Research and Therapy}, volume = {11}, journal = {AIDS Research and Therapy}, number = {17}, issn = {1742-6405}, doi = {10.1186/1742-6405-11-17}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115860}, year = {2014}, abstract = {Background: Opioids may have effects on susceptibility to HIV-infection, viral replication and disease progression. Injecting drug users (IDU), as well as anyone receiving opioids for anesthesia and analgesia may suffer the clinical consequences of such interactions. There is conflicting data between in vitro experiments showing an enhancing effect of opioids on HIV replication and clinical data, mostly showing no such effect. For clarification we studied the effects of the opioids heroin and morphine on HIV replication in cultured CD4-positive T cells at several concentrations and we related the observed effects with the relevant reached plasma concentrations found in IDUs. Methods: Latently-infected ACH-2 T lymphoblasts were incubated with different concentrations of morphine and heroine. Reactivation of HIV was assessed by intracellular staining of viral Gag p24 protein and subsequent flow cytometric quantification of p24-positive cells. The influence of the opioid antagonist naloxone and the antioxidants N-acetyl-cysteine (NAC) and glutathione (GSH) on HIV reactivation was determined. Cell viability was investigated by 7-AAD staining and flow cytometric quantification. Results: Morphine and heroine triggered reactivation of HIV replication in ACH-2 cells in a dose-dependent manner at concentrations above 1 mM (EC50 morphine 2.82 mM; EC50 morphine 1.96 mM). Naloxone did not interfere with heroine-mediated HIV reactivation, even at high concentrations (1 mM). Opioids also triggered necrotic cell death at similar concentrations at which HIV reactivation was observed. Both opioid-mediated reactivation of HIV and opioid-triggered cell death could be inhibited by the antioxidants GSH and NAC. Conclusions: Opioids reactivate HIV in vitro but at concentrations that are far above the plasma levels of analgesic regimes or drug concentrations found in IDUs. HIV reactivation was mediated by effects unrelated to opioid-receptor activation and was tightly linked to the cytotoxic activity of the substances at millimolar concentrations, suggesting that opioid-mediated reactivation of HIV was due to accompanying effects of cellular necrosis such as activation of reactive oxygen species and NF-kB.}, language = {en} }