@article{WaiderPoppLangeetal.2017, author = {Waider, J and Popp, S and Lange, MD and Kern, R and Kolter, JF and Kobler, J and Donner, NC and Lowe, KR and Malzbender, JH and Brazell, CJ and Arnold, MR and Aboagye, B and Schmitt-B{\"o}hrer, A and Lowry, CA and Pape, HC and Lesch, KP}, title = {Genetically driven brain serotonin deficiency facilitates panic-like escape behavior in mice}, series = {Translational Psychiatry}, volume = {7}, journal = {Translational Psychiatry}, number = {e1246}, doi = {10.1038/tp.2017.209}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170239}, year = {2017}, abstract = {Multiple lines of evidence implicate brain serotonin (5-hydroxytryptamine; 5-HT) system dysfunction in the pathophysiology of stressor-related and anxiety disorders. Here we investigate the influence of constitutively deficient 5-HT synthesis on stressor-related anxiety-like behaviors using Tryptophan hydroxylase 2 (Tph2) mutant mice. Functional assessment of c-Fos after associated foot shock, electrophysiological recordings of GABAergic synaptic transmission, differential expression of the Slc6a4 gene in serotonergic neurons were combined with locomotor and anxiety-like measurements in different contextual settings. Our findings indicate that constitutive Tph2 inactivation and consequential lack of 5-HT synthesis in Tph2 null mutant mice (Tph2\(^{-/-}\)) results in increased freezing to associated foot shock and a differential c-Fos activity pattern in the basolateral complex of the amygdala. This is accompanied by altered GABAergic transmission as observed by recordings of inhibitory postsynaptic currents on principal neurons in the basolateral nucleus, which may explain increased fear associated with hyperlocomotion and escape-like responses in aversive inescapable contexts. In contrast, lifelong 5-HT deficiency as observed in Tph2 heterozygous mice (Tph\(^{+/-}\)) is able to be compensated through reduced GABAergic transmission in the basolateral nucleus of the amygdala based on Slc6a4 mRNA upregulation in subdivisions of dorsal raphe neurons. This results in increased activity of the basolateral nucleus of the amygdala due to associated foot shock. In conclusion, our results reflect characteristic syndromal dimensions of panic disorder and agoraphobia. Thus, constitutive lack of 5-HT synthesis influence the risk for anxiety- and stressor-related disorders including panic disorder and comorbid agoraphobia through the absence of GABAergic-dependent compensatory mechanisms in the basolateral nucleus of the amygdala.}, language = {en} } @article{VeniaminovaCespuglioCheungetal.2017, author = {Veniaminova, Ekaterina and Cespuglio, Raymond and Cheung, Chi Wai and Umriukhin, Alexei and Markova, Nataliia and Shevtsova, Elena and Lesch, Klaus-Peter and Anthony, Daniel C. and Strekalova, Tatyana}, title = {Autism-like behaviours and memory deficits result from a Western Diet in mice}, series = {Neural Plasticity}, journal = {Neural Plasticity}, doi = {10.1155/2017/9498247}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158211}, pages = {9498247}, year = {2017}, abstract = {Nonalcoholic fatty liver disease, induced by a Western diet (WD), evokes central and peripheral inflammation that is accompanied by altered emotionality. These changes can be associated with abnormalities in social behaviour, hippocampus-dependent cognitive functions, and metabolism. Female C57BL/6J mice were fed with a regular chow or with a WD containing 0.2\% of cholesterol and 21\% of saturated fat for three weeks. WD-treated mice exhibited increased social avoidance, crawl-over and digging behaviours, decreased body-body contacts, and hyperlocomotion. The WD-fed group also displayed deficits in hippocampal-dependent performance such as contextual memory in a fear conditioning and pellet displacement paradigms. A reduction in glucose tolerance and elevated levels of serum cholesterol and leptin were also associated with the WD. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1a) mRNA, a marker of mitochondrial activity, was decreased in the prefrontal cortex, hippocampus, hypothalamus, and dorsal raphe, suggesting suppressed brain mitochondrial functions, but not in the liver. This is the first report to show that a WD can profoundly suppress social interactions and induce dominant-like behaviours in na{\"i}ve adult mice. The spectrum of behaviours that were found to be induced are reminiscent of symptoms associated with autism, and, if paralleled in humans, suggest that a WD might exacerbate autism spectrum disorder.}, language = {en} }