@phdthesis{Hansjakob2012, author = {Hansjakob, Anton}, title = {The role of cuticular waxes in the prepenetration processes of Blumeria graminis f.sp. hordei}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72840}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Der obligat biotrophe Pilz Blumeria graminis f.sp. hordei gilt als Erreger des Gerstenmehltaus, einer destruktiven Erkrankung der Gerste (Hordeum vulgare). Als Folge des Befalls mit B. graminis f.sp. hordei drohen erhebliche Ernteeinbußen. Das kutikul{\"a}re Wachs von Gerstenbl{\"a}ttern besteht haupts{\"a}chlich aus prim{\"a}ren Alkoholen (80\%), Alkylestern (10\%) sowie aus geringf{\"u}gig vorkommenden Bestandteilen wie Fetts{\"a}uren (2\%), Alkanen (2\%) und Aldehyden (1\%). Der initiale Kontakt der asexuellen und durch die Luft verbreiteten Konidien findet auf der Blattoberfl{\"a}che in einer Umgebung statt, die von den kutikul{\"a}ren Wachsen bestimmt ist, welche Keimung und Differenzierung stimulieren. W{\"a}hrend der Keimungs- und Differenzierungsphase durchlaufen die Konidien eine sequenzielle Morphogenese, die so genannten Pr{\"a}penetrationsprozesse. Dabei bilden die Konidien auf der Pflanzenoberfl{\"a}che zun{\"a}chst einen prim{\"a}ren, kurzen und im weiteren Verlauf einen sekund{\"a}ren, elongierten Keimschlauch aus. Im Anschluss daran schwillt dieser an und wird letztlich zu einem septierten Appressorium differenziert. Mit Hilfe des Appressoriums dringt der Pilz dann in die Epidermiszelle der Wirtspflanze ein und bildet ein initiales Haustorium, das die Ern{\"a}hrung des Pilzes sicherstellt. Um den Einfluss von einzelnen Wachsbestandteilen der Wirtspflanze auf die Pr{\"a}penetrationsprozesse systematisch zu untersuchen wurde ein neues in vitro System auf der Basis von Formvar®-Harz etabliert. Dieses System erm{\"o}glicht die Erzeugung homogener Oberfl{\"a}chen als Substrate f{\"u}r den Pilz, bei denen sowohl die aufgelagerten Mengen als auch die Oberfl{\"a}chenhydrophobizit{\"a}t unabh{\"a}ngig von den getesteten Substanzklassen und Kettenl{\"a}ngen der Molek{\"u}le hochgradig reproduzierbar sind. In diesem System haben langkettige Aldehyde die Keimung und die Differenzierung von B. graminis f.sp. hordei Konidien am wirksamsten induziert, wobei die Raten der Appressorienbildung in Abh{\"a}ngigkeit von der Konzentration und der Kettenl{\"a}nge im Vergleich zu n-Hexacosanal (C26), das sich als am effektivsten zeigte, abnahmen (C22<C28>>C30). Die getesteten gerad- und ungeradzahligen Alkane (C24-C33), Fetts{\"a}uren (C20-C28), Alkylester (C40-C44) und prim{\"a}ren Alkohole (C20-C30) hatten keinen signifikanten Einfluss auf die Keimung und die Appressorienbildung des Pilzes. Der prim{\"a}re Alkohol n-Hexacosanol (C26) stellte hierbei eine Ausnahme dar, da er die Keimung und die Bildung des Appressorium-Keimschlauchs signifikant erh{\"o}hte. Um die Rolle von langkettigen Aldehyden auf einer intakten Pflanzenoberfl{\"a}che in vivo genauer zu untersuchen wurden B. graminis f.sp. hordei Konidien auf Bl{\"a}tter von glossy11 Mutanten der Nicht-Wirtspflanze Mais (Zea mays) inokuliert. Anders als der Wildtyp weisen glossy11 Bl{\"a}tter keine langkettigen Aldehyde auf. Auf glossy11 Bl{\"a}ttern keimten 60\% der B. graminis f.sp. hordei Konidien nicht und nur 10\% der Konidien entwickelten ein reifes Appressorium, was einer dreimal geringeren Rate als auf Wildtyp-Bl{\"a}ttern entspricht. Durch das Bespr{\"u}hen von glossy11 Bl{\"a}tter mit synthetischem n-Hexacosanal oder mit Wachs des Wildtyps wurden die pilzlichen Pr{\"a}penetrationsprozesse wieder vollst{\"a}ndig durchlaufen. Wurden im Gegensatz dazu Bl{\"a}tter des Mais-Wildtyps mit nicht induzierenden n-Alkanen, prim{\"a}ren Alkoholen oder langkettigen Fetts{\"a}uren bespr{\"u}ht, konnte das den Aldehyd-defizienten Ph{\"a}notyp von glossy11 imitieren. W{\"a}hrend der Pr{\"a}penetrationsprozesse wird ein Appressorium gebildet, wobei es sich hierbei um eine neu gebildete Zelle handelt. Die Keimung und die anschließende Morphogenese sind wichtige Schritte in der Etablierung der pilzlichen Infektionsstrukturen. Da diese Prozesse in einigen phytopathogenen Pilzen mit dem Zellzyklus gekoppelt sind wurde untersucht, inwieweit die Pr{\"a}penetrationsprozesse von B. graminis f.sp. hordei mit dem Verlauf des Zellzykluses synchronisiert sind. Hierf{\"u}r wurde eine Methode basierend auf DAPI (4,6-diamidino-2-phenylindole) zur F{\"a}rbung der Zellkerne f{\"u}r fixierte Pr{\"a}parate von B. graminis f.sp. hordei Konidien entwickelt. Mittels eines pharmakologischen Ansatzes war es auf diese Weise erstmals m{\"o}glich die Abh{\"a}ngigkeit der Pr{\"a}penetrationsprozesse von der Mitose in vivo und in vitro zu verfolgen. Sechs Stunden nach der Inokulation trat nach Ausbildung des Appressorium-Keimschlauchs eine Mitose in der einkernigen Konidie auf. Die Hemmung der S-Phase mit Hydroxyharnstoff oder die Hemmung der M-Phase mit Benomyl verhinderten eine Bildung des Appressoriums, nicht aber die Entwicklung des Appressorium-Keimschlauchs. Diese Ergebnisse weisen darauf hin, dass die Mitose und eine abgeschlossene Zytokinese notwendige Voraussetzungen f{\"u}r die Appressoriumsbildung, jedoch nicht f{\"u}r die Morphogenese der Konidie, sind. Als Reaktion auf bestimmte Wachsbestandteile der Wirtspflanze werden pilzliche Gene, die w{\"a}hrend der Pr{\"a}penetrationsprozesse eine wichtige Rolle spielen k{\"o}nnen, differenziell exprimiert. Um solche Gene zu identifizieren wurden cDNA Klonbibliotheken mittels der suppression subtractive hybridization (SSH) 22 Minuten nach der Inokulation erstellt. Das auf Formvar®-Harz basierende in vitro System erm{\"o}glichte die selektive Anreicherung von cDNA Sequenzen aus B. graminis f.sp. hordei Konidien, die auf n-Hexacosanal beschichteten Oberfl{\"a}chen inokuliert wurden. Aus einer Reihe von Kandidaten wurde eine cDNA-Sequenz identifiziert, die sowohl auf Gerstenbl{\"a}ttern als auch auf mit n-Hexacosanal oder extrahiertem Gerstenwachs beschichteten Oberfl{\"a}chen hochreguliert war. Mittels 3' und 5' RACE wurde das n-Hexacosanal induzierte Transkript kloniert. Diese cDNA-Sequenz wies keine Homologien zu bekannten Genen, die Funktionen in der pilzlichen Entwicklung und der Ausbildung von Pathogenit{\"a}t in Pflanzen haben, auf.}, subject = {.}, language = {en} } @misc{RostasRufZabkaetal.2008, author = {Rost{\´a}s, Michael and Ruf, Daniel and Zabka, Vanessa and Hildebrandt, Ulrich}, title = {Plant surface wax affects parasitoid's response to host footprints}, organization = {Michael Rost{\´a}s}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29201}, year = {2008}, abstract = {The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants (cer-za.126, cer-yp.949) and wild type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.}, subject = {Brackwespen}, language = {en} } @phdthesis{Jiang2004, author = {Jiang, Fan}, title = {Water, mineral nutrient and hormone flows and exchanges in the hemiparasitic association between root hemiparasite Rhinanthus minor and the host Hordeum vulgare}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Summary Using the facultative root hemiparasite Rhinanthus minor and Hordeum vulgare as a host, several aspects of water relations, the flows and partitioning of mineral nutrients, the flows, depositions and metabolism of abscisic acid (ABA) and zeatin type cytokinins (zeatin Z, zeatin riboside ZR, zeatin nucleotide ZN) within the host, the parasite and between host and parasite and the flows and partitioning of the transport metabolites mannitol in the parasite, and of sucrose in the host, have been studied during the study period 41 to 54 days after planting, i.e about 30 to 43 days after successful attachment of the parasite to the host. Water relations Extraction of xylem sap by the parasite from the host's roots is facilitated by considerably higher transpiration per leaf area in the parasite than in the host and by the fact that stomata of attached Rhinanthus were wide open all day and night despite extremely high ABA concentrations in the leaves. By comparison, another related root hemiparasite, Melampyrum arvense, parasitising on various grasses in the field (botanic garden), showed normal diurnal stomatal behaviour. The abnormal behaviour of Rhinanthus stomata was not due to anatomical reasons as closure could be induced by applying high external ABA concentrations. Remarkable differences have been detected between the hydraulic conductance of barley seminal roots showing relatively low values, and that of Rhinanthus the seminal root showing very high values. The latter could be related to the observed high ABA concentrations in these roots. Whole plant water uptake, transpirational losses, growth-dependent deposition and the flows of water within the plants have been measured in singly growing Rhinanthus and Hordeum plants and in the parasitic association between the two. Water uptake, deposition and transpiration in Rhinanthus were dramatically increased after attachment to the barley host; most of the water used by the parasite was extracted as xylem sap from the host, thereby scavenging 20\% of the total water taken up by the host's roots. This water uptake by the parasitised host, however, due to a parasite induced reduction in the hosts growth, was decreased by 22\% as compared to non- parasitised barley. The overall changes in growth-related water deposition in host and parasite pointed to decreased shoot and relatively favoured root growth in the host and to strongly favoured shoot growth and less strongly increased root growth only in the parasite. These changes in the host became more severe, when more than one Rhinanthus was parasitising one barley plant. Mineral nutrients relations 5 mM NO3- supply In parasitising Rhinanthus shoot growth was 12-fold, but root growth only twofold increased compared to the non-parasitising (very small) plants. On the other hand, in the Hordeum host, shoot dry matter growth was clearly reduced, by 33\% in leaf laminae and by 52\% in leaf sheaths, whereas root growth was only slightly reduced as a consequence of parasitism. Growth-dependent increments of total N and P and of K, Ca and Mg in parasitising Rhinanthus shoot were strongly increased, particularly increments of total N and P, which were 18 and 42 times, respectively, higher than in the small solitary Rhinanthus. On the other hand, increments of the above mineral nutrients in leaf sheaths of parasitised Hordeum vulgare were more strongly decreased than in leaf laminae in response to parasitic attack. Estimation of the flows of nutrients revealed that Rhinanthus withdrew from the host xylem sap about the same percentage of each nutrients: 18\% of total N, 22\% of P and 20\% of K. Within the host almost all net flows of nutrient ions were decreased due to parasitism, but retranslocation from shoot to root-as related to xylem flow-was somewhat increased for all nutrients. Quantitative information is provided to show that the substantially increased growth in the shoot of attached Rhinanthus and the observed decrease in Hordeum shoot growth after infection were related to strongly elevated supply of nitrogen and phosphorus in the parasite and to incipient deficiency of these nutrients in the parasitised host. The flows of nutrients between host and parasite are discussed in terms of low selectivity of nutrient abstraction from the host xylem by the hemiparasite Rhinanthus minor. 1 mM NO3- or 1 mM NH4+ supply Rhinanthus shoot growth as measured by dry matter increase, was 19-fold (1 mM NO3-) and 15-fold (1 mM NH4+), but root growth only twofold (1 mM NO3-) and 2.9-fold (1 mM NH4+) increased-relative to singly growing Rhinanthus-when parasitising on host barley. In the Hordeum host, shoot dry matter growth was clearly reduced, whereas root growth was only slightly affected. Growth-dependent increments of total N and P and of K, Ca and Mg in parasitising Rhinanthus shoot were strongly increased, particularly increments of total N or of P, which were 20 or 53 times (1 mM NO3-) and 18 or 51 times (1 mM NH4+) , respectively, higher than those in solitary Rhinanthus. Within the host almost all net flows of nutrient ions were decreased due to parasitism. Flows of mannitol in parasite and sucrose flows in host barley When the plants were supplied with 5 mM NO3-, the biosynthesis of mannitol in Rhinanthus shoots increased 16-fold by parasitism, resulting in a 15-fold higher mannitol flow in the phloem and a 10-fold higher deposition in the shoot. Also the backward transport of mannitol in the xylem were increased 10-fold after attachment. Lower level nitrogen supply increased the deposition of mannitol in both single and attached Rhinanthus shoot and root. No mannitol was found in barley roots even in the direct vicinity of the haustoria. This indicates there are no backward transport of xylem sap from parasite to host. Compared to unparasitised barley, the net biosynthesis and deposition of sucrose in the shoot and the phloem flow was decreased substantially when plants were supplied with 5 mM NO3- or 1 mM NO3-. No sucrose has been detected in barley xylem sap and consequently there was no indication of a sucrose transfer from the host to the parasite. A possible involvement of mannitol in the abscisic acid relations of the parasite is discussed. ABA relations When the plants were supplied with 5 mM NO3-, there were weak or no effects of parasitism on ABA flows, biosynthesis and ABA degradation in barley. However, ABA growth-dependent deposition was significantly increased in the leaf laminae (3 fold) and in leaf sheath (2.4 fold), but not in roots. Dramatic changes in ABA flows, metabolism and deposition on a per plant basis, however, have been observed in Rhinanthus. Biosynthesis in the roots was 12-fold higher after attachment resulting in 14-fold higher ABA flows in the xylem. A large portion of this ABA was metabolised, a small portion was deposited. Phloem flows of ABA were increased 13-fold after attachment. The concentrations of ABA in tissues and xylem sap were higher in attached Rhinanthus by an order of magnitude than in host tissues and xylem sap. Similar dramatic difference existed when comparing the high concentrations in the xylem sap of single Rhinanthus with unparasitised barley. As compared to 5 mM NO3-, lower NO3- or 1 mM NH4+ supply doubled the ABA concentrations in barley leaf laminae, while having only small or no significant effects in the other organs. The possible special functions of ABA for the parasite are discussed. Zeatin type cytokinins relations Parasitism decreased, in the case of zeatin (Z), the synthesis (by 57\%) in the root, xylem flows (by 56\%) and metabolism (by 71\%) in leaf laminae, however, increased the phloem flows of zeatin massively (3-fold) in host barley. The deposition of zeatin in the root of Rhinanthus and the flowing in xylem and phloem were 24, 12, 29-fold, respectively, increased after successfully attaching to the host barley. However, net biosynthesis of zeatin in Rhinanthus roots decreased by 39\% after attachment. This indicates that a large portion (70\%) of xylem flow of zeatin in attached Rhinanthus was extracted from the host. In singly growing Rhinanthus plants, the balance of zeatin deposition in the shoot was negative, i.e. zeatin was metabolised and exported back to root in the phloem. The xylem flows of zeatin riboside (ZR) in barley decreased by 39\% after infected by Rhinanthus; phloem flow, which was 117\% relative to xylem flow was less decreased (by 13\%) after infection. Deposition of ZR has not been significantly affected in the leaf laminae, in leaf sheaths and roots. After parasitising on the host barley depositions in root, xylem flow and phloem flow increased 12, 18, 88-fold respectively in Rhinanthus. A large portion (57\%) of xylem flow of ZR in attached Rhinanthus was extracted from the host. In single Rhinanthus increament of shoot zeatin riboside was negative and a substantial portion was degraded in shoot and the rest was retranslocated back to the root in the phloem. A significant depositions of Z and ZR were detected in the haustoria of the Rhinanthus/barley association. Flows and deposition of zeatin nucleotides also have been investigated. The possible physiological functions of the large quantities of Z and ZR derived from the host barley, for the improved growth and the stomatal opening in the parasitising Rhinanthus are discussed.}, subject = {Hemiparasit}, language = {en} }