@article{YuWolfThuseketal.2021, author = {Yu, Yidong and Wolf, Ann-Katrin and Thusek, Sina and Heinekamp, Thorsten and Bromley, Michael and Krappmann, Sven and Terpitz, Ulrich and Voigt, Kerstin and Brakhage, Axel A. and Beilhack, Andreas}, title = {Direct Visualization of Fungal Burden in Filamentous Fungus-Infected Silkworms}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof7020136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228855}, year = {2021}, abstract = {Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients. Combating IFIs requires a more profound understanding of fungal pathogenicity to facilitate the development of novel antifungal strategies. Animal models are indispensable for studying fungal infections and to develop new antifungals. However, using mammalian animal models faces various hurdles including ethical issues and high costs, which makes large-scale infection experiments extremely challenging. To overcome these limitations, we optimized an invertebrate model and introduced a simple calcofluor white (CW) staining protocol to macroscopically and microscopically monitor disease progression in silkworms (Bombyx mori) infected with the human pathogenic filamentous fungi Aspergillus fumigatus and Lichtheimia corymbifera. This advanced silkworm A. fumigatus infection model could validate knockout mutants with either attenuated, strongly attenuated or unchanged virulence. Finally, CW staining allowed us to efficiently visualize antifungal treatment outcomes in infected silkworms. Conclusively, we here present a powerful animal model combined with a straightforward staining protocol to expedite large-scale in vivo research of fungal pathogenicity and to investigate novel antifungal candidates.}, language = {en} } @article{WaltherWagnerKurzai2019, author = {Walther, Grit and Wagner, Lysett and Kurzai, Oliver}, title = {Updates on the taxonomy of Mucorales with an emphasis on clinically important taxa}, series = {Journal of Fungi}, volume = {5}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof5040106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193081}, year = {2019}, abstract = {Fungi of the order Mucorales colonize all kinds of wet, organic materials and represent a permanent part of the human environment. They are economically important as fermenting agents of soybean products and producers of enzymes, but also as plant parasites and spoilage organisms. Several taxa cause life-threatening infections, predominantly in patients with impaired immunity. The order Mucorales has now been assigned to the phylum Mucoromycota and is comprised of 261 species in 55 genera. Of these accepted species, 38 have been reported to cause infections in humans, as a clinical entity known as mucormycosis. Due to molecular phylogenetic studies, the taxonomy of the order has changed widely during the last years. Characteristics such as homothallism, the shape of the suspensors, or the formation of sporangiola are shown to be not taxonomically relevant. Several genera including Absidia, Backusella, Circinella, Mucor, and Rhizomucor have been amended and their revisions are summarized in this review. Medically important species that have been affected by recent changes include Lichtheimia corymbifera, Mucor circinelloides, and Rhizopus microsporus. The species concept of Rhizopus arrhizus (syn. R. oryzae) is still a matter of debate. Currently, species identification of the Mucorales is best performed by sequencing of the internal transcribed spacer (ITS) region. Ecologically, the Mucorales represent a diverse group but for the majority of taxa, the ecological role and the geographic distribution remain unknown. Understanding the biology of these opportunistic fungal pathogens is a prerequisite for the prevention of infections, and, consequently, studies on the ecology of the Mucorales are urgently needed.}, language = {en} }