@article{GehrkeHackenbergTecleetal.2021, author = {Gehrke, Thomas and Hackenberg, Stephan and Tecle, Nyat and Hagen, Rudolf and Scherzad, Agmal}, title = {Tuberculosis in the Head and Neck: Changing Trends and Age-Related Patterns}, series = {The Laryngoscope}, volume = {131}, journal = {The Laryngoscope}, number = {12}, doi = {10.1002/lary.29668}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257524}, pages = {2701-2705}, year = {2021}, abstract = {Objective To evaluate changing trends in patient collectives, age-related patterns of manifestation, and diagnostic pathways of patients with extrapulmonary head and neck tuberculosis (TB), and to provide strategies to fasten diagnosis in these patients. Study design Case control study. Methods A 10-year retrospective analysis of 35 patients diagnosed with extrapulmonary TB in the head and neck at a tertiary university institution from 2009 to 2019, with special focus on the influence of the patient's age on consideration of TB and clinical patterns. Results The vast majority of patients younger than 40 years had their origin in countries with high TB burden (P = .0003), and TB was considered very early as a differential diagnosis (P = .0068), while most patients older than 40 years were domestic citizens initially suspected for a malignancy, who more often had an underlying immunosuppressive condition (0.0472). Most frequent manifestations in both groups were the lymph nodes, larynx, and oropharynx. Surprisingly, no differences in the rates of open TB or history of TB infection in the family anamnesis were found. Conclusion The two groups of patients found most often are younger patients migrating from regions with high TB burden and elderly domestic patients suffering from immunosuppressive conditions, with the latter often being misdiagnosed as malignancies. TB remains an important but difficult differential diagnosis, due to the initially unspecific symptoms and the great variety in the presentation of manifestations in the head and neck.}, language = {en} } @article{KohlmorgenEliasSchoen2017, author = {Kohlmorgen, Britta and Elias, Johannes and Schoen, Christoph}, title = {Improved performance of the artus Mycobacterium tuberculosis RG PCR kit in a low incidence setting: a retrospective monocentric study}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {14127}, doi = {10.1038/s41598-017-14367-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159248}, year = {2017}, abstract = {Tuberculosis (TB) and the spread of Mycobacterium tuberculosis complex (MTBC) strains resistant against rifampin (RIF) and isoniazid (INH) pose a serious threat to global health. However, rapid and reliable MTBC detection along with RIF/INH susceptibility testing are challenging in low prevalence countries due to the higher rate of false positives. Here, we provide the first performance data for the artus MTBC PCR assay in a low prevalence setting. We analyze 1323 respiratory and 311 non-respiratory samples with the artus MTBC PCR assay as well as by mycobacterial culture and microscopy. We propose retesting of specimens in duplicate and consideration of a determined cycle-threshold value cut-off greater than 34, as this significantly increases accuracy, specificity, and negative predictive value without affecting sensitivity. Furthermore, we tested fourteen MTBC positive samples with the GenoType MTBDRplus test and demonstrate that using an identical DNA extraction protocol for both assays does not impair downstream genotypic testing for RIF and INH susceptibility. In conclusion, our procedure optimizes the use of the artus MTB assay with workload efficient methods in a low incidence setting. Combining the modified artus MTB with the GenoType MTBDRplus assays allows rapid and accurate detection of MTBC and RIF/INH resistance.}, language = {en} } @phdthesis{Kesetovic2016, author = {Kesetovic, Diana}, title = {Synthesis and biological testing of potential anti-tuberculosis drugs targeting the β-ketoacyl ACP synthase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131301}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {With 9.6 million new cases and 1.5 million deaths in 2014, tuberculosis (TB) is alongside with AIDS the most deadly infection.‎ Foremost, the increased prevalence of resistant strains of M. tuberculosis among the TB-infected population represents a serious thread. Hence, in the last decades, novel drug targets have been investigated worldwide. So far a relatively unexplored target is the cell wall enzyme β-ketoacyl-ACP-synthase "KasA", which plays a crucial role in maintaining the membrane impermeability and hence the cell ability to resist to the immune response and drug therapy. KasA is a key enzyme in the fatty acid synthase "FAS-II" elongation cycle, responsible for the extension of the growing acyl chain within the biosynthesis of precursors for the most hydrophobic constituents of the cell wall - mycolic acids. Design of the novel KasA inhibitors, performed in the research group of Prof. Sotriffer by C. Topf and B. Schaefer, was based on the recently published crystal structure of KasA‎ in complex with its known inhibitor thiolactomycin (TLM). Considering the essential ligand-enzyme interactions, a pharmacophore model was built and applied in the virtual screening of a modified ZINC database. Selected hits with the best in silico affinity data have been reported by Topf‎ and Schaefer‎. In this work, two of the obtained hits were synthesized and their structure was systematically varied. First, a virtual screening hit, chromone-2-carboxamide derivative GS-71, was modified in the amide part. Since the most of the products possessed a very low solubility in the aqueous buffer medium used in biological assays, polar groups (nitro, succinamidyl and trimethyl-amino substituent in position 6 of the chromone ring or hydroxyl group on the benzene ring in the amide part have been inserted to the molecule. Further variations yielded diaryl ketones, diaryl ketone bearing a succinamidyl substituent, carboxamide bearing a methylpiperazinyl-4-oxobutanamido group and methyl-malonyl ester amides. Basically, the essential structural features necessary for the ligand-enzyme interactions have been maintained. The latter virtual screening hit, a pyrimidinone derivative VS-8‎ was synthesized and the structure was modified by substitution in positions 2, 4, 5 and 6 of the pyrimidine ring. Due to autofluorescence, detected in most of the products, this model structure was not further varied. Simultaneously, experiments on solubilization of the first chromone-2-carboxamides with cyclodextrins, cyclic oligosacharides known to form water-soluble inclusion complexes, were performed. Although the assessed solubility of the chromone 3b/DIMEB (1:3) mixture exceeded 14-fold the intrinsic one, the achieved 100 µM solubility was still not sufficient to be used as a stock solution in the binding assay. The experiments with cyclodextrin in combination with DMSO were ineffective. Owing to high material costs necessary for the appropriate cyclodextrin amounts, the aim focused on structural modification of the hydrophobic products. Precise structural data have been obtained from the solved crystal structures of three chromone derivatives: the screening hit GS-71 (3b), its trimethylammonium salt (18) and 6-nitro-substituted N-benzyl-N-methyl-chromone-2-carboxamide (9i). The first two compounds are nearly planar with an anti-/trans-rotamer configuration. In the latter structure, the carboxamide bridge is bent out of the chromone plane, showing an anti-rotamer, too. Considering the relatively low partition coefficient of compound 3b (cLogP = 2.32), the compound planarity and correlating tight molecular packing might be the factors significantly affecting its poor solubility. Regarding the biological results of the chromone-based compounds, similar structure-activity correlations could be drawn from the binding assay and the whole cell activity testing on M. tuberculosis. In both cases, the introduction of a nitro group to position 6 of the chromone ring and the presence of a flexible substituent in the amide part showed a positive effect. In the binding study, the nitro group at position 4 on the N-benzyl residue was of advantage, too. The highest enzyme affinity was observed for N-(4-nitrobenzyl)-chromone-2-carboxamide 4c (KD = 34 µM), 6-nitro substituted N-benzyl-chromone-2-carboxamide 9g (KD = 40 µM) and 6‑nitro-substituted N-(4-nitrobenzyl)-chromone-2-carboxamide 9j (KD = 31 µM), which could not be attributed to the fluorescence quenching potential of the nitro group. The assay interference potential of chromones, due to a covalent binding on the enzyme sulfhydryl groups, was found to be negligible at the assay conditions. Moderate in vivo activity was detected for 6‑nitro-substituted N-benzyl-chromone-2-carboxamide 9g and its N-benzyl-N-methyl-, N‑furylmethyl-, N-cyclohexyl- and N-cyclohexylmethyl derivatives 9i, 9d, 9e, 9f, for which MIC values 20 - 40 µM were assessed. Cytotoxicity was increased in the N‑cyclohexylmethyl derivative only. None of the pyrimidine-based compounds showed activity in vivo. The affinity of the model structure, VS-8, surpassed with KD = 97 µM the assessed affinity of TLM (KD = 142 µM). Since for the model chromone compound GS-71 no reliable KasA binding data could be obtained, a newly synthesized chromone derivative 9i was docked into the KasA binding site, in order to derive correlation between the in silico and in vitro assessed affinity. For the 6‑nitro-derivative 9i a moderate in vivo activity on M. tuberculosis was obtained. The in silico predicted pKi values for TLM and 9i were higher than the corresponding in vitro results, maintaining though a similar tendency, i.e., the both affinity values for compound 9i (pKi predicted = 6.64, pKD experimental = 4.02) surpassed those obtained for TLM (pKi predicted = 5.27, pKD experimental = 3.84). Nevertheless, the experimental pKD values are considered preliminary results. The binding assay method has been improved in order to acquire more accurate data. Owing to the method development, limited enzyme batches and solubility issues, only selected compounds could be evaluated. The best hits, together with the compounds active on the whole cells of M. tuberculosis, will be submitted to the kinetic enzyme assay, in order to confirm the TLM-like binding mechanism. Regarding the in vivo testing results, no correlations could be drawn between the predicted membrane permeability values and the experimental data, as for the most active compounds 9e and 9f, a very low permeability was anticipated (0.4 and 0.7 \%, respectively). Further biological tests would be required to investigate the action- or transport mode.}, subject = {Tuberkelbakterium}, language = {en} }