@article{ThiessErnstKupferetal.2020, author = {Thiess, Torsten and Ernst, Moritz and Kupfer, Thomas and Braunschweig, Holger}, title = {Facile Access to Substituted 1,4-Diaza-2,3-Diborinines}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {13}, doi = {10.1002/chem.201905356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214650}, pages = {2967 -- 2972}, year = {2020}, abstract = {Several bis(dimethylamino)-substituted 1,4-diaza-2,3-diborinines (DADBs) were synthesized with variable substituents at the backbone nitrogen atoms. By reaction with HCl or BX\(_{3}\) (X=Br, I), these species were successfully converted into their synthetically more useful halide congeners. The high versatility of the generated B-X bonds in further functionalization reactions at the boron centers was demonstrated by means of salt elimination (MeLi) and commutation (NMe\(_{2}\) DADBs) reactions, thus making the DADB system a general structural motif in diborane(4) chemistry. A total of 18 DADB derivatives were characterized in the solid state by X-ray diffraction, revealing a strong dependence of the heterocyclic bonding parameters from the exocyclic substitution pattern at boron. According to our experiments towards the realization of a Dipp-substituted, sterically encumbered DADB, the mechanism of DADB formation proceeds via a transient four-membered azadiboretidine intermediate that subsequently undergoes ring expansion to afford the six-membered DADB heterocycle.}, language = {en} } @article{ThiessMellerupBraunschweig2019, author = {Thiess, Torsten and Mellerup, Soren K. and Braunschweig, Holger}, title = {B-B Cleavage and Ring-Expansion of a 1,4,2,3-Diazadiborinine with N-Heterocyclic Carbenes}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {59}, doi = {10.1002/chem.201903259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206173}, pages = {13572-13578}, year = {2019}, abstract = {A 1,4,2,3-diazadiborinine derivative was found to form Lewis adducts with strong two-electron donors such as N-heterocyclic and cyclic (alkyl)(amino)carbenes. Depending on the donor, some of these Lewis pairs are thermally unstable, converting to sole B,N-embedded products upon gentle heating. The products of these reactions, which have been fully characterized by NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction, were identified as B,N-heterocycles with fused 1,5,2,4-diazadiborepine and 1,4,2-diazaborinine rings. Computational modelling of the reaction mechanism provides insight into the formation of these unique structures, suggesting that a series of B-H, C-N, and B-B bond activation steps are responsible for these "intercalation" reactions between the 1,4,2,3-diazadiborinine and NHCs.}, language = {en} }