@article{OberdorfSchaschekWeinzierletal.2023, author = {Oberdorf, Felix and Schaschek, Myriam and Weinzierl, Sven and Stein, Nikolai and Matzner, Martin and Flath, Christoph M.}, title = {Predictive end-to-end enterprise process network monitoring}, series = {Business \& Information Systems Engineering}, volume = {65}, journal = {Business \& Information Systems Engineering}, number = {1}, issn = {2363-7005}, doi = {10.1007/s12599-022-00778-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323814}, pages = {49-64}, year = {2023}, abstract = {Ever-growing data availability combined with rapid progress in analytics has laid the foundation for the emergence of business process analytics. Organizations strive to leverage predictive process analytics to obtain insights. However, current implementations are designed to deal with homogeneous data. Consequently, there is limited practical use in an organization with heterogeneous data sources. The paper proposes a method for predictive end-to-end enterprise process network monitoring leveraging multi-headed deep neural networks to overcome this limitation. A case study performed with a medium-sized German manufacturing company highlights the method's utility for organizations.}, language = {en} } @article{DresiaKurudzijaDeekenetal.2023, author = {Dresia, Kai and Kurudzija, Eldin and Deeken, Jan and Waxenegger-Wilfing, G{\"u}nther}, title = {Improved wall temperature prediction for the LUMEN rocket combustion chamber with neural networks}, series = {Aerospace}, volume = {10}, journal = {Aerospace}, number = {5}, issn = {2226-4310}, doi = {10.3390/aerospace10050450}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319169}, year = {2023}, abstract = {Accurate calculations of the heat transfer and the resulting maximum wall temperature are essential for the optimal design of reliable and efficient regenerative cooling systems. However, predicting the heat transfer of supercritical methane flowing in cooling channels of a regeneratively cooled rocket combustor presents a significant challenge. High-fidelity CFD calculations provide sufficient accuracy but are computationally too expensive to be used within elaborate design optimization routines. In a previous work it has been shown that a surrogate model based on neural networks is able to predict the maximum wall temperature along straight cooling channels with convincing precision when trained with data from CFD simulations for simple cooling channel segments. In this paper, the methodology is extended to cooling channels with curvature. The predictions of the extended model are tested against CFD simulations with different boundary conditions for the representative LUMEN combustor contour with varying geometries and heat flux densities. The high accuracy of the extended model's predictions, suggests that it will be a valuable tool for designing and analyzing regenerative cooling systems with greater efficiency and effectiveness.}, language = {en} }