@article{JunGholamiSongetal.2014, author = {Jun, Kyong-Hwa and Gholami, Spedideh and Song, Tae-Jin and Au, Joyce and Haddad, Dana and Carson, Joshua and Chen, Chun-Hao and Mojica, Kelly and Zanzonico, Pat and Chen, Nanhai G. and Zhang, Qian and Szalay, Aladar and Fong, Yuman}, title = {A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter}, series = {Journal of Experimental \& Clinical Cancer Research}, volume = {33}, journal = {Journal of Experimental \& Clinical Cancer Research}, number = {2}, issn = {1756-9966}, doi = {10.1186/1756-9966-33-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117716}, year = {2014}, abstract = {Background: Gastric cancers have poor overall survival despite recent advancements in early detection methods, endoscopic resection techniques, and chemotherapy treatments. Vaccinia viral therapy has had promising therapeutic potential for various cancers and has a great safety profile. We investigated the therapeutic efficacy of a novel genetically-engineered vaccinia virus carrying the human sodium iodide symporter (hNIS) gene, GLV-1 h153, on gastric cancers and its potential utility for imaging with Tc-99m pertechnetate scintigraphy and I-124 positron emission tomography (PET). Methods: GLV-1 h153 was tested against five human gastric cancer cell lines using cytotoxicity and standard viral plaque assays. In vivo, subcutaneous flank tumors were generated in nude mice with human gastric cancer cells, MKN-74. Tumors were subsequently injected with either GLV-1 h153 or PBS and followed for tumor growth. Tc-99m pertechnetate scintigraphy and I-124 microPET imaging were performed. Results: GFP expression, a surrogate for viral infectivity, confirmed viral infection by 24 hours. At a multiplicity of infection (MOI) of 1, GLV-1 h153 achieved > 90\% cytotoxicity in MNK-74, OCUM-2MD3, and AGS over 9 days, and >70\% cytotoxicity in MNK-45 and TMK-1. In vivo, GLV-1 h153 was effective in treating xenografts (p < 0.001) after 2 weeks of treatment. GLV-1 h153-infected tumors were readily imaged by Tc-99m pertechnetate scintigraphy and I-124 microPET imaging 2 days after treatment. Conclusions: GLV-1 h153 is an effective oncolytic virus expressing the hNIS protein that can efficiently regress gastric tumors and allow deep-tissue imaging. These data encourages its continued investigation in clinical settings.}, language = {en} } @phdthesis{Le2008, author = {Le, Thu Ha}, title = {Protein dynamics in responder and non-responder solid tumor xenografts during oncolytic viral therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32016}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {VACV GLV-1h68 was reported as a diagnostic/therapeutic vector which enters, replicates in, and reveals the locations of tumors in mice. Furthermore, the effect on tumor colonization, on tumor growth, regression and eradication by VACV GLV-1h68 without the need of any known genes with anti-tumoral activities was determined. To investigate differential protein expression between infected tumor cells and corresponding tumors, as well as between infected tumor cells, between infected tumors, proteomics is particularly used, possibly contributing to the understanding oncolytic ability on the protein level of VACV GLV-1h68. The given effects of VACV GLV-1h68 infection on cellular protein expression support tumor cell killing. In this study, differential protein expression was analyzed at different time points with two-dimensional gel electrophoresis (2DE) followed by MALDI-TOF/TOF identification. Comparative analysis of multiple 2-DE gels revealed that the majority of protein expression changes appeared at 48 hours post infection in cell cultivation and at 42 days post infection in tumors. Mass spectrometry identified 68, 75, 159 altered cellular proteins in the GI-101A, HT-29, PC-3 infected cells, respectively, including 30, 23, 49 up-regulated proteins and 38, 52, 110 down-regulated proteins 12 to 48 hours after infection. For xenografts, mass spectrometry identified 270, 101, 91 altered cellular proteins in the infected GI-101A, HT-29, PC-3 tumors, respectively, including 89, 70, 40 up-regulated proteins and 181, 31, 51 down-regulated proteins 7 to 42 days after infection. In general, in the cell lines, the proteins found to be differentially regulated are most often associated with metabolic processes, in particular with primary energy metabolism (glucose catabolism, TCA and lactate production). VAVC GLV 1h68 infection results in hijacking of the host translation apparatus, alteration of cytoskeleton networks, induce ubiqitin proteasome pathway (UPP) disorders. Particularly in tumors, the responses cover a much broader panel of cellular processes, including signalling (e.g., cell death), transport (in particular of iron ions) and migration. A common pathway to be up-regulated in both tumors and cell lines is the "unfolded protein response". Notably, VACV GLV-1h68 affected the anti-apoptosis pathways in GI-101A and PC-3 cancer cells but not in HT-29 xenografts. For example, GI-101A xenografts in mice appear 12 proteins associated with anti-apoptosis function. They were found down-regulated, including tumor protein-translationally-controlled (H-TPT1), rho-GDP-dissociation inhibitor alpha (H-GDIa), ywhaq protein (M-1433T), H-PRDX4, serine/threonine-protein phosphatase-2A-catalytic subunit beta isoform PP2A (M-Ppp2cb), eukaryotic translation initiation factor 2-subunit 1 alpha-35kDa (H-eIF2), H-actinin-\&\#945;1 (ACTN1 ), Annexin A1 (H-A1), annexin A5 (H-A5), Mouse albumin 1 (M-Alb1), dimethylarginine dimethylaminohydrolase 2 (H-DDAH2). In PC-3 xenografts, anti-apoptosis expression is lesser than those in GI-101A cells, however 3 anti-apoptosis associated proteins were down-regulated such as ARP3 actin-related protein-3-homolog (H-ARP3), Human FLNA protein, Rho GDP dissociation inhibitor (GDI) alpha (H-GDIa). In contrast, in HT-29 xenografts, there are several anti-apoptosis-associated proteins that show even to be up-regulated; they mostly belong to peroxiredoxin proteins. Lesson from HT-29 had been given what various means the HT-29 cells use to escape their apoptosis fate. This suggests that VAVC GLV1h68 infection may induce unbalance of unfolded protein response (UPR) but tending to anti-apoptosis-mediated proteins and promote the destructive elements of UPR, including caspase-12 cleavage and apoptosis. Taken together in this thesis research I have tried to compare protein profiles obtained from responder cell line and from regressing solid tumors colonized by VAVC GLV-1h68 with that of non-responding tumors. I also compared these data with PC-3 prostate cell line and tumor data on intermediate responder which alter mouse protein profiling in tumors similarly to the highly efficacious GI-101A breast tumor cell line. From these comparisons I have deduced exciting protein pattern signature characteristic for a responder or distinctly different from non-responder system. Combining these few crucial genes involved with the transcriptional test data obtained by fellow graduate student at NIH a novel national designed VACV GLV-1h68 strains with enhanced efficacy in many today non-responder cancer cell lines will be available to be tested into ongoing clinical trials.}, language = {en} }