@article{HollenhorstJurastowNandigamaetal.2020, author = {Hollenhorst, Monika I. and Jurastow, Innokentij and Nandigama, Rajender and Appenzeller, Silke and Li, Lei and Vogel, J{\"o}rg and Wiederhold, Stephanie and Althaus, Mike and Empting, Martin and Altm{\"u}ller, Janine and Hirsch, Anna K. H. and Flockerzi, Veit and Canning, Brendan J. and Saliba, Antoine-Emmanuel and Krasteva-Christ, Gabriela}, title = {Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling}, series = {The FASEB Journal}, volume = {34}, journal = {The FASEB Journal}, number = {1}, doi = {10.1096/fj.201901314RR}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213516}, pages = {316 -- 332}, year = {2020}, abstract = {For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter "taste" substances are most probably initiated by tracheal brush cells (BC). Our single-cell RNA-seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca\(^{2+}\)]\(_{i}\) in BC and subsequent ACh-release. ACh-release is regulated in an autocrine manner. While the muscarinic ACh-receptors M3R and M1R are activating, M2R is inhibitory. Paracrine effects of ACh released in response to denatonium included increased [Ca\(^{2+}\)]\(_{i}\) in ciliated cells. Stimulation by denatonium or with Pseudomonas quinolone signaling molecules led to an increase in mucociliary clearance in explanted tracheae that was Trpm5- and M3R-mediated. We show that ACh-release from BC via the bitter taste cascade leads to immediate paracrine protective responses that can be boosted in an autocrine manner. This mechanism represents the initial step for the activation of innate immune responses against pathogens in the airways.}, language = {en} } @article{HesselbachScheiner2018, author = {Hesselbach, Hannah and Scheiner, Ricarda}, title = {Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {4954}, doi = {10.1038/s41598-018-23200-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175853}, year = {2018}, abstract = {Due to intensive agriculture honeybees are threatened by various pesticides. The use of one group of them, the neonicotinoids, was recently restricted by the European Union. These chemicals bind to the nicotinic acetylcholine receptor (nAchR) in the honeybee brain. Recently, Bayer AG released a new pesticide by the name of "Sivanto" against sucking insects. It is assumed to be harmless for honeybees, although its active ingredient, flupyradifurone, binds nAchR similar to the neonicotinoids. We investigated if this pesticide affects the taste for sugar and cognitive performance in honeybee foragers. These bees are directly exposed to the pesticide while foraging for pollen or nectar. Our results demonstrate that flupyradifurone can reduce taste and appetitive learning performance in honeybees foraging for pollen and nectar, although only the highest concentration had significant effects. Most likely, honeybee foragers will not be exposed to these high concentrations. Therefore, the appropriate use of this pesticide is considered safe for honeybees, at least with respect to the behaviors studied here.}, language = {en} }