@misc{Wenzel2011, type = {Master Thesis}, author = {Wenzel, Frank}, title = {Smell and repel: Resin based defense mechanisms and interactions between Australian ants and stingless bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Bees are subject to permanent threat from predators such as ants. Their nests with large quantities of brood, pollen and honey represent lucrative targets for attacks whereas foragers have to face rivalry at food sources. This thesis focused on the role of stingless bees as third party interactor on ant-aphid-associations as well as on the predatory potential represented by ants and defense mechanisms against this threat. Regular observations of an aphid infested Podocarpus for approaching stingless bees yielded no results. Another aim of this thesis was the observation of foraging habits of four native and one introduced ant species for assessment of their predatory potential to stingless bees. All species turned out to be dietary balanced generalists with one mostly carnivorous species and four species predominantly collecting nectar roughly according to optimal foraging theory. Two of the species monitored, Rhytidoponera metallica and Iridomyrmex rufoniger were considered potential nest robbers. As the name implies, stingless bees lack the powerful weapon of their distant relatives; hence they specialized on other defense strategies. Resin is an important, multipurpose resource for stingless bees that is used as material for nest construction, antibiotic and for defensive means. For the latter purpose highly viscous resin is either directly used to stick down aggressors or its terpenic compounds are included in the bees cuticular surface. In a feeding choice experiment, three ant species were confronted with the choice between two native bee species - Tetragonula carbonaria and Austroplebeia australis - with different cuticular profiles and resin collection habits. Two of the ant species, especially the introduced Tetramorium bicarinatum did not show any preferences. The carnivorous R. metallica predominantly took the less resinous A. australis as prey. The reluctance towards T. carbonaria disappeared when the resinous compounds on its cuticle had been washed off with hexane. To test whether the repulsive reactions were related to the stickiness of the resinous surface or to chemical substances, hexane extracts of bees' cuticles, propolis and three natural tree resins were prepared. In the following assay responses of ants towards extract treated surfaces were observed. Except for one of the resin extracts, all tested substances had repellent effects to the ants. Efficacy varied with the type of extract and species. Especially to the introduced T. bicarinatum the cuticular extract had no effect. GCMS-analyses showed that some of the resinous compounds were also found in the cuticular profile of T. carbonaria which featured reasonable analogies to the resin of Corymbia torelliana that is highly attractive for stingless bees. The results showed that repellent effects were only partially related to the sticky quality of resin but were rather caused by chemical substances, presumably sesqui- and diterpenes. Despite its efficacy this defense strategy only provides short time repellent effects sufficient for escape and warning of nest mates to initiate further preventive measures.}, subject = {Stachellose Biene}, language = {en} } @article{RostasBlassmann2009, author = {Rost{\´a}s, Michael and Blassmann, Katrin}, title = {Insects had it first: surfactants as a defence against predators}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35031}, year = {2009}, abstract = {Insects have evolved an astonishing array of defences to ward off enemies. Well-known and widespread is the regurgitation of oral secretions (OS), fluids that repel attacking predators. In herbivores, the effectiveness of OS has been ascribed so far to the presence of deterrent secondary metabolites sequestered from the host plant. This notion implies, however, that generalists experience less protection on plants with low amounts of secondary metabolites or with compounds ineffective against potential enemies. Resolving the dilemma, we describe a novel defence mechanism that is independent of deterrents as it relies on the OS' intrinsic detergent properties. The OS of Spodoptera exigua (and other species) was found to be highly amphiphilic and well capable of wetting the hydrophobic cuticle of predatory ants. As a result, affected ants stopped attacking and engaged in extensive cleansing. The presence of surfactants was sufficient to explain the defensive character of herbivore OS. We hypothesize that detergency is a common but unrecognised mode of defence which provides a base level of protection that may or may not be further enhanced by plant-derived deterrents. Our study also proves that insects 'invented' the use of defensive surfactants long before modern agriculture had started applying them as insecticides.}, subject = {Pflanzenfressende Insekten}, language = {en} } @article{Rostas2007, author = {Rost{\´a}s, Michael}, title = {The effects of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one on two species of Spodoptera and the growth of Setosphaeria turcica in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35079}, year = {2007}, abstract = {Maize seedlings contain high amounts of glucosidically bound 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). The effects of DIMBOA on the feeding behaviour and performance of two noctuids, Spodoptera exigua H{\"u}bner and S. frugiperda Smith, were compared. The question was raised whether S. frugiperda, preferring maize and other Poaceae, is better adapted to DIMBOA than S. exigua. In addition, the effects of DIMBOA on the mycelial growth of the plant pathogen Setosphaeria turcica Leonard et Suggs (causal agent of northern corn leaf blight) was assessed in vitro. DIMBOA had an antifeedant effect on S. exigua but stimulated feeding in S. frugiperda in dual-choice experiments. In a no-choice setup, larvae of S. exigua gained less biomass and had a prolonged development when feeding on an artificial diet containing DIMBOA. However, pupal weight was not significantly different between treatments. In contrast, larvae of S. frugiperda were not affected by DIMBOA. Strong detrimental effects of DIMBOA were found on the mycelial growth of the pathogen S. turcica.}, subject = {Eulen }, language = {en} }