@phdthesis{Wirsing2023, author = {Wirsing, Sara}, title = {Computational Spectroscopic Studies with Focus on Organic Semiconductor Systems}, doi = {10.25972/OPUS-28655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work presents excited state investigations on several systems with respect to experimental spectroscopic work. The majority of projects covers the temporal evolution of excitations in thin films of organic semiconductor materials. In the first chapters, thinfilm and interface systems are build from diindeno[1,2,3-cd:1',2',3'-lm]perylene (DIP) and N,N'-bis-(2-ethylhexyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDIR-CN2) layers, in the third chapter bulk systems consist of 4,4',4"-tris[(3-methylphenyl)phenylamino] triphenylamine (m-MTDATA), 4,7-diphenyl-1,10-phenanthroline (BPhen) and tris-(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane (3TPYMB). These were investigated by aggregate-based calculations. Careful selection of methods and incorporation of geometrical relaxation and environmental effects allows for a precise energetical assignment of excitations. The biggest issue was a proper description of charge-transfer excitations, which was resolved by the application of ionization potential tuning on aggregates. Subsequent characterization of excitations and their interplay condenses the picture. Therefore, we could assign important features of the experimental spectroscopic data and explain differences between systems. The last chapter in this work covers the analysis of single molecule spectroscopy on methylbismut. This poses different challenges for computations, such as multi-reference character of low-lying excitations and an intrinsic need for a relativistic description. We resolved this by combining complete active space self-consistent field based methods with scalarrelativistic density-functional theory. Thus we were able to confidently assign the spectroscopic features and explain underlying processes.}, subject = {Theoretische Chemie}, language = {en} } @phdthesis{Krebs2023, author = {Krebs, Johannes Heinrich}, title = {Investigation of Dicarba-closo-dodecaborane as a Substituent on Three-coordinate Boron and as an Acceptor in a Pyrene-Donor-Acceptor System}, doi = {10.25972/OPUS-28675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {1. Bis(1-(4-tolyl)-carboran-2-yl)-(4-tolyl)-borane, a new bis(o-carboranyl)-(R)-borane 1 was synthesised by lithiation of the o-carboranyl precursor and subsequent salt metathesis reaction with (4-tolyl)BBr2. Cyclic voltammetry experiments on 1 show multiple distinct reduction events with a one-electron first reduction. In a selective reduction experiment the corresponding paramagnetic radical anion 1•- was isolated and characterized. Single-crystal structure analyses allow an in-depth comparison of 1, 1•-, their calculated geometries, and the S1 excited state of 1. 2. The choice of backbone linker for ortho-bis-(9-borafluorene)s has a great influence on the LUMO located at the boron centers and therefore the reactivity of the respective compounds. Herein, we report the room temperature rearrangement of 1,2-bis-(9-borafluorenyl-)-ortho-carborane, C2B10H10-1,2-[B(C12H8)]2 ([2a]) featuring o-carborane as the inorganic three-dimensional backbone and the synthesis of 1,2-bis-(9-borafluorenyl-)benzene, C6H4-1,2-[B(C12H8)]2 (2b) its phenylene analog. DFT calculations on the transition state for the rearrangement support an intramolecular C-H bond activation process via an SEAr-like mechanism in [2a], and predicted that the same rearrangement would take place in 2b, but at elevated temperatures, which indeed proved to be the case. 3. We synthesized 4 a julolidine-like pyrenyl-o-carborane, with pyrene substituted at the 2,7-positions on the HOMO/LUMO nodal plane, continuing our research. Using solid state molecular structures, photophysical data, cyclic voltammetry, DFT and TD-DFT calculations we compare o-carborane and the B(mes)2 (mes = 2,4,6-Me3C6H2) as acceptor groups and confirm the julolidine-like donor strength.}, subject = {closo-Borane}, language = {en} }