@phdthesis{Derakhshani2019, author = {Derakhshani, Shaghayegh}, title = {Measles virus infection enhances dendritic cell migration in a 3D environment}, doi = {10.25972/OPUS-18918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189182}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The respiratory system is amongst the most important compartments in the human body. Due to its connection to the external environment, it is one of the most common portals of pathogen entry. Airborne pathogens like measles virus (MV) carried in liquid droplets exhaled from the infected individuals via a cough or sneeze enter the body from the upper respiratory tract and travel down to the lower respiratory tract and reach the alveoli. There, pathogens are captured by the resident dendritic cells (DCs) or macrophages and brought to the lymph node where immune responses or, as in case of MV, dissemination via the hematopoietic cell compartment are initiated. Basic mechanisms governing MV exit from the respiratory tract, especially virus transmission from infected immune cells to the epithelial cells have not been fully addressed before. Considering the importance of these factors in the viral spread, a complex close-to-in-vivo 3D human respiratory tract model was generated. This model was established using de-cellularized porcine intestine tissue as a biological scaffold and H358 cells as targets for infection. The scaffold was embedded with fibroblast cells, and later on, an endothelial cell layer seeded at the basolateral side. This provided an environment resembling the respiratory tract where MV infected DCs had to transmigrate through the collagen scaffold and transmit the virus to epithelial cells in a Nectin-4 dependent manner. For viral transmission, the access of infected DCs to the recipient epithelial cells is an essential prerequisite and therefore, this important factor which is reflected by cell migration was analyzed in this 3D system. The enhanced motility of specifically MV-infected DCs in the 3D models was observed, which occurred independently of factors released from the other cell types in the models. Enhanced motility of infected DCs in 3D collagen matrices suggested infection-induced cytoskeletal remodeling, as also verified by detection of cytoskeletal polarization, uropod formation. This enforced migration was sensitive to ROCK inhibition revealing that MV infection induces an amoeboid migration mode in DCs. In support of this, the formation of podosome structures and filopodia, as well as their activity, were reduced in infected DCs and retained in their uninfected siblings. Differential migration modes of uninfected and infected DCs did not cause differential maturation, which was found to be identical for both populations. As an underlying mechanism driving this enforced migration, the role of sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) was studied in MV-exposed cultures. It was shown in this thesis that MV-infection increased S1P production, and this was identified as a contributing factor as inhibition sphingosine kinase activity abolished enforced migration of MV-infected DCs. These findings revealed that MV infection induces a fast push-and-squeeze amoeboid mode of migration, which is supported by SphK/S1P axis. However, this push-and-squeeze amoeboid migration mode did not prevent the transendothelial migration of MV-infected DCs. Altogether, this 3D system has been proven to be a suitable model to study specific parameters of mechanisms involved in infections in an in vivo-like conditions.}, subject = {Dendritische Zelle}, language = {en} } @article{OberlaenderPletinckxDaehleretal.2011, author = {Oberl{\"a}nder, Uwe and Pletinckx, Katrien and D{\"a}hler, Anja and M{\"u}ller, Nora and Lutz, Manfred and Arzberger, Thomas and Riederer, Peter and Gerlach, Manfred and Koutsilieri, Eleni and Scheller, Carsten}, title = {Neuromelanin is an Immune Stimulator for Dendritic Cells in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69210}, year = {2011}, abstract = {Background: Parkinson's disease (PD) is characterized at the cellular level by a destruction of neuromelanin (NM)-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that antimelanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs), the major cell type for inducing Tand B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results: Murine DCs were treated with NM of substantia nigra (SN) from human subjects or with synthetic dopamine melanin (DAM). DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh). NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-a. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions: NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger.}, subject = {Immunstimulation}, language = {en} } @phdthesis{Pletinckx2011, author = {Pletinckx, Katrien}, title = {Dendritic cell maturation and instruction of CD4+ T cell tolerance in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67375}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Effective T cell immunity was believed to occur by mature DC, whereas tolerogenicity was attributed strictly to immature DC phenotypes. However, intermediate DC maturation stages were identified conditioned by inflammatory mediators like TNF. Furthermore, the T cell tolerance mechanisms are dependent on distinct modes and intensities of co-stimulation. Therefore, in this study it was addressed how distinct DC maturation signatures instruct CD4+ T cell tolerance mechanisms. DC acquire antigens from apoptotic cells for self-peptide-MHC presentation and functionally adapt presumed tolerogenic DC phenotypes. Here, immature murine bone-marrow derived DC representing both inflammatory and conventional DC subsets adapted a maturationresistant DC signature upon apoptotic cell recognition but no additional tolerogenic features. Immature DC instruct CD4+ FoxP3+ regulatory T cells in a TGF-β prone micro-environment or generate anergic CD4+ T cells hampered in the TCR-induced proliferation and IL-2 secretion. Secondary stimulation of such anergic CD4+ T cells by immature DC increased primarily IL-10 production and conferred regulatory function. These IL-10+ regulatory T cells expressed high levels of CTLA-4, which is potently induced by immature DC in particular. Data in this work showed that anergic T cells can be re-programmed to become IL-10+ regulatory T cells upon ligation of CTLA-4 and CD28 signalling cascades by B7 costimulatory ligands on immature DC. In contrast, semi-mature DC phenotypes conditioned by the inflammatory mediator TNF prevented autoimmune disorders by induction of IL-10+ Th2 responses as demonstrated previously. Here, it was shown that TNF as an endogenous maturation stimulus and pathogenic Trypanosoma brucei variant-specific surface glycoproteins (VSG) induced highly similar DC gene expression signatures which instructed default effector Th2 responses. Repetitive administration of the differentially conditioned semi-mature DC effectively skewed T cell immunity to IL-10+ Th2 cells, mediating immune deviation and suppression. Collectively, the data presented in this work provide novel insights how immature and partially mature DC phenotypes generate T cell tolerance mechanisms in vitro, which has important implications for the design of effective DC-targeted vaccines. Unravelling the DC maturation signatures is central to the long-standing quest to break tolerance mimicked by malignant tumours or re-establish immune homeostasis in allergic or autoimmune disorders.}, subject = {Dendritische Zelle}, language = {en} } @article{AvotaGulbinsSchneiderSchaulies2011, author = {Avota, Elita and Gulbins, Erich and Schneider-Schaulies, Sibylle}, title = {DC-SIGN Mediated Sphingomyelinase-Activation and Ceramide Generation Is Essential for Enhancement of Viral Uptake in Dendritic Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69056}, year = {2011}, abstract = {As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is poorly understood. We now show that DC-SIGN ligation on DCs by antibodies, mannan or measles virus (MV) causes rapid activation of neutral and acid sphingomyelinases followed by accumulation of ceramides in the outer membrane leaflet. SMase activation is important in promoting DC-SIGN signaling, but also for enhancement of MV uptake into DCs. DCSIGN-dependent SMase activation induces efficient, transient recruitment of CD150, which functions both as MV uptake receptor and microbial sensor, from an intracellular Lamp-1+ storage compartment shared with acid sphingomyelinase (ASM) within a few minutes. Subsequently, CD150 is displayed at the cell surface and co-clusters with DC-SIGN. Thus, DCSIGN ligation initiates SMase-dependent formation of ceramide-enriched membrane microdomains which promote vertical segregation of CD150 from intracellular storage compartments along with ASM. Given the ability to promote receptor and signalosome co-segration into (or exclusion from) ceramide enriched microdomains which provide a favorable environment for membrane fusion, DC-SIGN-dependent SMase activation may be of general importance for modes and efficiency of pathogen uptake into DCs, and their routing to specific compartments, but also for modulating T cell responses.}, subject = {Dendritische Zelle}, language = {en} } @phdthesis{TranVan2010, author = {Tran-Van, Hieu}, title = {Semaphorin receptors in the immunological synapse: regulation and measles virus-driven modulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53926}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {J{\"a}hrlich gehen ca. 164000 Todesf{\"a}lle (WHO, 2008) auf eine Infektion mit Masernviren (MV) zur{\"u}ck. Die Hauptursache f{\"u}r den t{\"o}dlichen Verlauf der Krankheit ist die MV-induzierte Immunsuppression, deren zugrunde liegende Mechanismen noch nicht v{\"o}llig aufgekl{\"a}rt sind. Es gibt Hinweise darauf, dass MV einerseits die Funktionalit{\"a}t von T-Zellen beeintr{\"a}chtigt, indem es die Aktindynamik behindert, und andererseits dendritische Zellen (DC) infiziert, was dazu f{\"u}hrt, dass sie T-Zellen nicht mehr vollst{\"a}ndig aktivieren k{\"o}nnen. W{\"a}hrend der Entwicklung bzw. des Wachstums von Neuronen kommt es zum Kollaps wachsender Dendriten, wenn Semaphorine (insbesondere SEMA3A) an den Rezeptor Plexin-A1 (plexA1) und seinem Korezeptor Neuropilin-1 (NP-1) binden. Dieser Kollaps wird durch interferenz mit der Aktindynamik verursacht. In dieser Studie wurde die Funktion dieser drei Molek{\"u}le in Immunzellen bzw. ihre Rolle in der MV-induzierten Immunsuppression untersucht. Es konnte gezeigt werden, dass plexA1 eine wichtige Komponente der humanen immunologischen Synapse (IS) ist. Nach CD3/CD28-Ligation kommt es zur transienten Translokation zur T-Zelloberfl{\"a}che und zur Akkumulation an der Kontaktfl{\"a}che zwischen T-Zelle und DC bzw. α-CD3/CD28 beschichteten Mikropartikeln. Wird die plexA1-Expression inhibiert (RNAi) oder die plexA1-Funktion gest{\"o}rt (exogenes Blockieren oder Expression einer dominant negativen Mutante), ist die T-Zellexpansion reduziert. Nach MV-Exposition ist die Translokation von plexA1 und NP-1, ebenfalls einem wichtigen Bestandteil der immunologischen Synapse, zur Kontaktfl{\"a}che auf T-Zellseite gest{\"o}rt. Des Weiteren behindert eine MV-Infektion den plexA1/NP-1-Metabolismus in reifenden DC und f{\"u}hrt zus{\"a}tzlich zu einer fr{\"u}hen und starken Aussch{\"u}ttung von SEMA3A durch DC, insbesondere in Gegenwart allogener T-Zellen. Durch rasterelektronenmikroskopische Aufnahmen wurde gezeigt, dass SEMA3A einen transienten Verlust aktinbasierter Zellforts{\"a}tze bei T-Zellen zur Folge hat. Zus{\"a}tzlich reduziert SEMA3A das chemotaktische Migrationsverhalten von DC und T Zell und die Frequenz ihrer Konjugat-Bildung. Zusammenfassend stellt sich die Situation so dar, dass MV die Semaphorinrezeptorfunktion zum einen dadurch beeintr{\"a}chtigt, dass es die Rekrutierung der Rezeptoren zur IS verhindert und zum anderen zur verfr{\"u}hten Aussch{\"u}ttung des kollapsinduzierenden Liganden SEMA3A f{\"u}hrt. Beide Ph{\"a}nomene k{\"o}nnten einen wichtigen Beitrag zur MV-induzierten Immunsuppression leisten.}, subject = {Masernvirus}, language = {en} } @article{BrandlOrtlerHerrmannetal.2010, author = {Brandl, Carolin and Ortler, Sonja and Herrmann, Thomas and Cardell, Susanna and Lutz, Manfred B. and Wiendl, Heinz}, title = {B7-H1-Deficiency Enhances the Potential of Tolerogenic Dendritic Cells by Activating CD1d-Restricted Type II NKT Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68457}, year = {2010}, abstract = {Background: Dendritic cells (DC) can act tolerogenic at a semi-mature stage by induction of protective CD4+ T cell and NKT cell responses. Methodology/Principal Findings: Here we studied the role of the co-inhibitory molecule B7-H1 (PD-L1, CD274) on semimature DC that were generated from bone marrow (BM) cells of B7-H12/2 mice and applied to the model of Experimental Autoimmune Encephalomyelitis (EAE). Injections of B7-H1-deficient DC showed increased EAE protection as compared to wild type (WT)-DC. Injections of B7-H12/2 TNF-DC induced higher release of peptide-specific IL-10 and IL-13 after restimulation in vitro together with elevated serum cytokines IL-4 and IL-13 produced by NKT cells, and reduced IL-17 and IFN-c production in the CNS. Experiments in CD1d2/2 and Ja2812/2 mice as well as with type I and II NKT cell lines indicated that only type II NKT cells but not type I NKT cells (invariant NKT cells) could be stimulated by an endogenous CD1d-ligand on DC and were responsible for the increased serum cytokine production in the absence of B7-H1. Conclusions/Significance: Together, our data indicate that BM-DC express an endogenous CD1d ligand and B7-H1 to ihibit type II but not type I NKT cells. In the absence of B7-H1 on these DC their tolerogenic potential to stimulate tolerogenic CD4+ and NKT cell responses is enhanced.}, subject = {Dendritische Zelle}, language = {en} } @phdthesis{Shishkova2008, author = {Shishkova, Yoana}, title = {Investigations of Measles virus regulation on activation and function of antigen presenting cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28283}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Interaction with dendritic cells (DCs) is considered as central to immunosuppression induced by viruses, including measles virus (MV). Commonly, viral infection of DCs abrogates their ability to promote T cell expansion, yet underlying mechanisms at a cellular level are undefined. It appears that MV-WTF infection modulate DCs morphology and dynamic adhesion on extra cellular matrix proteins such as FN or ICAM-1. By morphological criteria, WTF-DCs resembled LPS-DCs, associated with their mature phenotype also adhered less efficiently to the FN or ICAM-1 support. Reduced adhesion could not be explained by a lack of \&\#61538;1-integrin expression or activation. Similarly, MV-DCs strongly resembled LPS-DCs in that levels of focal adhesion kinase phosphorylated at Y397 were high and not further enhanced upon FN ligation. Fascin, a downstream effector of integrin signaling was highly upregulated in LPS-DCs and moderately in WTF-DCs, and differences in its subcellular distribution were not observed between both cell cultures. Apparently, however, fascin associated less efficiently with PKC\&\#61537; in WTF-DCs then in LPS-DCs. In line with findings for murine DCs, high motility of mature human DCs was found to require expression of Rac-GTPases. Human LPS-DCs and more so, DC transfected to express constitutively active Rac1 were the most motile DC-species analysed, confirming that migration of human DC also involved Rac activity. The velocity of WTF-DCs on FN is below that of LPS-DCs, indicating that maturation induced by WTF may be insufficient to completely promote integrin signaling which leads to Rac activation. The organisation of MV-DC/T cell interfaces was consistent with that of functional immune synapses with regard to CD3 clustering, MHC class II surface recruitment and MTOC location. These analyses are based in the selection of stable conjugates. Subsequently, however, neither contacts nor calcium flux can be stabilised and sustained in the majority of MV-DC/T cell conjugates and only promoted abortive T cell activation. Formation of spatially organised IS in T cells requites, prolonged contact durations. Therefore, aberrant distribution patterns of CD3 in these structures, if occurring, are not likely to contribute to the type of contacts predominating for WTF-DC/T cell interactions. It is also likely that transient interactions of less than 2 minutes may if at all, not efficiently support viral transmission to T cells. Transient interactions are typically observed with immature DCs in the absence of antigen, but this is not likely to be relevant in our allogenic system, which includes SA-loaded WTF-DCs. Thus, MV-infected DCs retain activities required for initiating, but not sustaining T cell conjugation and activation. This is partially rescued if surface expression of the MV glycoproteins on DCs is abolished by infection with a recombinant MV encoding VSV G protein instead, indicating that these contribute directly to synapse destabilisation and thereby act as effectors of T cell inhibition.}, subject = {Masern}, language = {en} }