@article{ChilloKleinertLautzetal.2016, author = {Chillo, Omary and Kleinert, Eike Christian and Lautz, Thomas and Lasch, Manuel and Pagel, Judith-Irina and Heun, Yvonn and Troidl, Kerstin and Fischer, Silvia and Caballero-Martinez, Amelia and Mauer, Annika and Kurz, Angela R. M. and Assmann, Gerald and Rehberg, Markus and Kanse, Sandip M. and Nieswandt, Bernhard and Walzog, Barbara and Reichel, Christoph A. and Mannell, Hanna and Preissner, Klaus T. and Deindl, Elisabeth}, title = {Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function}, series = {Cell Reports}, volume = {16}, journal = {Cell Reports}, number = {8}, doi = {10.1016/j.celrep.2016.07.040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164800}, pages = {2197-2207}, year = {2016}, abstract = {The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis) is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit+/CXCR-4+ cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases.}, language = {en} } @phdthesis{Oschatz2012, author = {Oschatz, Chris Tina}, title = {Mechanisms and functions of the mast cell-activated contact system in inflammatory reactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71539}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {SUMMARY Mast cell activation in allergic and inflammatory disease causes increased vascular permeability and edema. This thesis identifies a paracrine mechanism, by which heparin released from intracellular granules, is involved in mast cell-evoked alteration of endothelial barrier function in vivo. Negatively charged heparin initiated factor XII-driven contact activation. Activated factor XII triggered the formation of the inflammatory mediator bradykinin in plasma. Congenital deficiency and pharmacological targeting of factor XII and kinin B2 receptor provided protection from mast cell-heparin-induced leukocyte-endothelial adhesion and hypotension in rats and mice. Intravital laser scanning microscopy and tracer measurements showed that heparin increased leakage with fluid extravasation in skin microvessels in mice. Deficiency in factor XII or kinin B2 receptor conferred resistance to heparin-induced skin edema and largely protected mice from endothelial barrier dysfunction, caused by allergen-induced mast cell activation and anaphylactic reactions. In contrast, heparin and mast cell activation caused excessive edema formation in mice, deficient in the major inhibitor of factor XII, C1 esterase inhibitor. Hereditary angioedema patients, lacking C1 esterase inhibitor, suffered from allergeninduced edema. The data indicate that mast cell-heparin-initiated bradykinin formation plays a fundamental role in defective barrier function of pathological mast cell-mediated inflammation, hypotension and edema formation.}, subject = {Heparin}, language = {en} }