@phdthesis{Borst2017, author = {Borst, Andreas}, title = {Apoptosis \& senescence: cell fate determination in inhibitor-treated melanoma cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Neoplasms of the skin represent the most frequent tumors worldwide; fortunately, most of them are benign or semi-malignant and well treatable. However, the two most aggressive and deadly forms of malignant skin-neoplasms are melanoma and Merkel cell carcinoma (MCC), being responsible for more than 90\% of skin-cancer related deaths. The last decade has yielded enormous progress in melanoma therapy with the advent of targeted therapies, like BRAF or MEK inhibitors, and immune-stimulating therapies, using checkpoint antibodies targeting CTLA- 4, PD-1 or PD-L1. Very recent studies suggest that also MCC patients benefit from a treatment with checkpoint antibodies. Nevertheless, in an advanced metastatic stage, a cure for both of these aggressive malignancies is still hard to achieve: while only a subset of patients experience durable benefit from the immune-based therapies, the widely applicable targeted therapies struggle with development of resistances that inevitably occur in most patients, and finally lead to their death. The four articles included in this thesis addressed current questions concerning therapy and carcinogenesis of melanoma and MCC. Moreover, they are discussed in the light of the up-to-date research regarding targeted and immune-based therapies. In article I we demonstrated that besides apoptosis, MAPK pathway inhibition in BRAF-mutated melanoma cells also induces senescence, a permanent cell cycle arrest. These cells may provide a source for relapse, as even permanently arrested cancer cells can contribute to a pro-tumorigenic milieu. To identify molecular factors determining the differential response, we established M14 melanoma cell line derived single cell clones that either undergo cell death or arrest when treated with BRAF/MEK inhibitors. Using these single cell clones, we demonstrated in article IV that downregulation of the pro-apoptotic BH3-only protein BIK via epigenetic silencing is involved in apoptosis deficiency, which can be overcome by HDAC inhibitors. These observations provide a possible explanation for the lack of a complete and durable response to MAPK inhibitor treatment in melanoma patients, and suggest the application of HDAC inhibitors as a complimentary therapy to MAPK pathway inhibition. Concerning MCC, we scrutinized the interactions between the Merkel cell polyomavirus' (MCV) T antigens (TA) and the tumor suppressors p53 and Rb in article II and III, respectively. In article III, we demonstrated that the cell cycle master regulator Rb is the crucial target of MCV large T (LT), while it - in contrast to other polyomavirus LTs - exhibits much lower affinity to the related proteins p107 and p130. Knockdown of MCV LT led to proliferation arrest in MCC cells, which can be rescued by knockdown of Rb, but not by knockdown of p107 and p130. Contrary to Rb, restriction of p53 in MCC seems to be independent of the MCV TAs, as we demonstrated in article II. In conclusion, the presented thesis has revealed new molecular details, regarding the response of melanoma cells towards an important treatment modality and the mechanisms of viral carcinogenesis in MCC.}, subject = {Melanom}, language = {en} } @article{MuenstThierWinnemoelleretal.2016, author = {M{\"u}nst, Bernhard and Thier, Marc Christian and Winnem{\"o}ller, Dirk and Helfen, Martina and Thummer, Rajkumar P. and Edenhofer, Frank}, title = {Nanog induces suppression of senescence through downregulation of p27\(^{KIP1}\) expression}, series = {Journal of Cell Science}, volume = {129}, journal = {Journal of Cell Science}, number = {5}, doi = {10.1242/jcs.167932}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190761}, pages = {912-920}, year = {2016}, abstract = {A comprehensive analysis of the molecular network of cellular factors establishing and maintaining pluripotency as well as self renewal of pluripotent stem cells is key for further progress in understanding basic stem cell biology. Nanog is necessary for the natural induction of pluripotency in early mammalian development but dispensable for both its maintenance and its artificial induction. To gain further insight into the molecular activity of Nanog, we analyzed the outcomes of Nanog gain-of-function in various cell models employing a recently developed biologically active recombinant cell-permeant protein, Nanog-TAT. We found that Nanog enhances the proliferation of both NIH 3T3 and primary fibroblast cells. Nanog transduction into primary fibroblasts results in suppression of senescence-associated beta-galactosidase activity. Investigation of cell cycle factors revealed that transient activation of Nanog correlates with consistent downregulation of the cell cycle inhibitor p27\(^{KIP1}\) (also known as CDKN1B). By performing chromatin immunoprecipitation analysis, we confirmed bona fide Nanog-binding sites upstream of the p27\(^{KIP1}\) gene, establishing a direct link between physical occupancy and functional regulation. Our data demonstrates that Nanog enhances proliferation of fibroblasts through transcriptional regulation of cell cycle inhibitor p27 gene.}, language = {en} }