@article{HofmannGinexEspargaroetal.2021, author = {Hofmann, Julian and Ginex, Tiziana and Espargar{\´o}, Alba and Scheiner, Matthias and Gunesch, Sandra and Arag{\´o}, Marc and Stigloher, Christian and Sabat{\´e}, Raimon and Luque, F. Javier and Decker, Michael}, title = {Azobioisosteres of Curcumin with Pronounced Activity against Amyloid Aggregation, Intracellular Oxidative Stress, and Neuroinflammation}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {19}, doi = {10.1002/chem.202005263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238988}, pages = {6015 -- 6027}, year = {2021}, abstract = {Many (poly-)phenolic natural products, for example, curcumin and taxifolin, have been studied for their activity against specific hallmarks of neurodegeneration, such as amyloid-β 42 (Aβ42) aggregation and neuroinflammation. Due to their drawbacks, arising from poor pharmacokinetics, rapid metabolism, and even instability in aqueous medium, the biological activity of azobenzene compounds carrying a pharmacophoric catechol group, which have been designed as bioisoteres of curcumin has been examined. Molecular simulations reveal the ability of these compounds to form a hydrophobic cluster with Aβ42, which adopts different folds, affecting the propensity to populate fibril-like conformations. Furthermore, the curcumin bioisosteres exceeded the parent compound in activity against Aβ42 aggregation inhibition, glutamate-induced intracellular oxidative stress in HT22 cells, and neuroinflammation in microglial BV-2 cells. The most active compound prevented apoptosis of HT22 cells at a concentration of 2.5 μm (83 \% cell survival), whereas curcumin only showed very low protection at 10 μm (21 \% cell survival).}, language = {en} } @phdthesis{Daiss2004, author = {Daiß, J{\"u}rgen Oliver}, title = {Synthesis of sila-analogs and silicon-containing derivatives of drugs and development and application of the Si-2,4,6-trimethoxyphenyl moiety as a novel protecting group in organosilicon chemistry}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11187}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {The present work describes the synthesis of sila-venlafaxine, disila-bexarotene, disila-AG-045572 (disila-CMPD1), a series of silicon-based allosteric modulators of muscarinic receptors, and a partial synthesis of sila-gabapentin. Crystal structure data of rac-sila-venlafaxine hydrochloride, (R)-sila-venlafaxine hydrobromide, bexarotene, disila-bexarotene, and disila-AG-045572 (disila-CMPD1) are included. Studies on the biological activities of sila-venlafaxine and of silicon-based allosteric modulators of muscarinic receptors are discussed. The Si-2,4,6-trimethoxyphenyl (Si-2,4,6-TMOP) moiety is described as a novel, acid-labile protecting group in organosilicon chemistry. The synthesis of chlorotris(chloromethyl)silane and tris(chloromethyl)methoxysilane is described.}, subject = {Wirkstoff}, language = {en} }