@incollection{LutStarenkova2022, author = {Lut, Kateryna and Starenkova, Hanna}, title = {The Relationship between Language, Culture, and Development of Society}, series = {Studies in Modern English}, booktitle = {Studies in Modern English}, editor = {Lazebna, Nataliia and Kumar, Dinesh}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, doi = {10.25972/WUP-978-3-95826-199-0-63}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296484}, publisher = {W{\"u}rzburg University Press}, pages = {63-72}, year = {2022}, abstract = {The paper analyses specific characteristics of language that influence the development of culture and societies. The problem of the connection between language and culture has occupied the minds of many famous scientists: some believe that language is a part of the culture as a whole; others think that language is only a form of cultural expression. Undoubtedly, language constitutes a vital component of the cultural background underlying social development. Language is an essential means of communication and interaction. However, language is at the same time sovereign about culture as a whole and can be separate from culture or compared to culture as an equal element (i.e., that language is neither a form nor a component of culture).}, language = {en} } @article{BreilKanskePittigetal.2021, author = {Breil, Christina and Kanske, Philipp and Pittig, Roxana and B{\"o}ckler, Anne}, title = {A revised instrument for the assessment of empathy and Theory of Mind in adolescents: Introducing the EmpaToM-Y}, series = {Behavior Research Methods}, volume = {53}, journal = {Behavior Research Methods}, doi = {10.3758/s13428-021-01589-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302877}, pages = {2487-2501}, year = {2021}, abstract = {Empathy and Theory of Mind (ToM) are two core components of social understanding. The EmpaToM is a validated social video task that allows for independent manipulation and assessment of the two capacities. First applications revealed that empathy and ToM are dissociable constructs on a neuronal as well as on a behavioral level. As the EmpaToM has been designed for the assessment of social understanding in adults, it has a high degree of complexity and comprises topics that are inadequate for minors. For this reason, we designed a new version of the EmpaToM that is especially suited to measure empathy and ToM in youths. In experiment 1, we successfully validated the EmpaToM-Y on the original EmpaToM in an adult sample (N = 61), revealing a similar pattern of results across tasks and strong correlations of all constructs. As intended, the performance measure for ToM and the control condition of the EmpaToM-Y showed reduced difficulty. In experiment 2, we tested the feasibility of the EmpaToM-Y in a group of teenagers (N = 36). Results indicate a reliable empathy induction and higher demands of ToM questions for adolescents. We provide a promising task for future research targeting inter-individual variability of socio-cognitive and socio-affective capacities as well as their precursors and outcomes in healthy minors and clinical populations.}, language = {en} } @article{SchusterLisackSubotaetal.2021, author = {Schuster, Sarah and Lisack, Jaime and Subota, Ines and Zimmermann, Henriette and Reuter, Christian and Mueller, Tobias and Morriswood, Brooke and Engstler, Markus}, title = {Unexpected plasiticty in the life cycle of Trypanosoma brucei}, series = {eLife}, volume = {10}, journal = {eLife}, doi = {10.7554/eLife.66028.sa2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261744}, year = {2021}, abstract = {African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host's circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia.}, language = {en} } @article{BeerHelfrichFoerster2020, author = {Beer, Katharina and Helfrich-F{\"o}rster, Charlotte}, title = {Post-embryonic Development of the Circadian Clock Seems to Correlate With Social Life Style in Bees}, series = {Frontiers in Cell and Developmental Biology}, volume = {8}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2020.581323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216450}, year = {2020}, abstract = {Social life style can influence many aspects of an animal's daily life, but it has not yet been clarified, whether development of the circadian clock in social and solitary living bees differs. In a comparative study, with the social honey bee, Apis mellifera, and the solitary mason bee, Osmia bicornis, we now found indications for a differentially timed clock development in social and solitary bees. Newly emerged solitary bees showed rhythmic locomotion right away and the number of neurons in the brain that produce the clock component pigment-dispersing factor (PDF) did not change during aging of the adult solitary bee. Honey bees on the other hand, showed no circadian locomotion directly after emergence and the neuronal clock network continued to grow after emergence. Social bees appear to emerge at an early developmental stage at which the circadian clock is still immature, but bees are already able to fulfill in-hive tasks.}, language = {en} } @article{JuergensBieniussaVoelkeretal.2020, author = {Juergens, Lukas and Bieniussa, Linda and Voelker, Johannes and Hagen, Rudolf and Rak, Kristen}, title = {Spatio-temporal distribution of tubulin-binding cofactors and posttranslational modifications of tubulin in the cochlea of mice}, series = {Histochemistry and Cell Biology}, volume = {154}, journal = {Histochemistry and Cell Biology}, issn = {0948-6143}, doi = {10.1007/s00418-020-01905-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234852}, pages = {671-681}, year = {2020}, abstract = {The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the formation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing.}, language = {en} } @article{SchieleReinhardReifetal.2016, author = {Schiele, Miriam A. and Reinhard, Julia and Reif, Andreas and Domschke, Katharina and Romanos, Marcel and Deckert, J{\"u}rgen and Pauli, Paul}, title = {Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults}, series = {Developmental Psychobiology}, volume = {58}, journal = {Developmental Psychobiology}, number = {4}, doi = {10.1002/dev.21393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189488}, pages = {471-481}, year = {2016}, abstract = {Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues.}, language = {en} } @article{WilleSchuemannKreutzeretal.2015, author = {Wille, Michael and Sch{\"u}mann, Antje and Kreutzer, Michael and Glocker, Michael O and Wree, Andreas and Mutzbauer, Grit and Schmitt, Oliver}, title = {The proteome profiles of the olfactory bulb of juvenile, adult and aged rats - an ontogenetic study}, series = {Proteome Science}, volume = {13}, journal = {Proteome Science}, number = {8}, doi = {10.1186/s12953-014-0058-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144073}, year = {2015}, abstract = {Background: In this study, we searched for proteins that change their expression in the olfactory bulb (oB) of rats during ontogenesis. Up to now, protein expression differences in the developing animal are not fully understood. Our investigation focused on the question whether specific proteins exist which are only expressed during different development stages. This might lead to a better characterization of the microenvironment and to a better determination of factors and candidates that influence the differentiation of neuronal progenitor cells. Results: After analyzing the samples by two-dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), it could be shown that the number of expressed proteins differs depending on the developmental stages. Especially members of the functional classes, like proteins of biosynthesis, regulatory proteins and structural proteins, show the highest differential expression in the stages of development analyzed. Conclusion: In this study, quantitative changes in the expression of proteins in the oB at different developmental stages (postnatal days (P) 7, 90 and 637) could be observed. Furthermore, the expression of many proteins was found at specific developmental stages. It was possible to identify these proteins which are involved in processes like support of cell migration and differentiation.}, language = {en} } @article{WilleSchuemannWreeetal.2015, author = {Wille, Michael and Sch{\"u}mann, Antje and Wree, Andreas and Kreutzer, Michael and Glocker, Michael O. and Mutzbauer, Grit and Schmitt, Oliver}, title = {The Proteome Profiles of the Cerebellum of Juvenile, Adult and Aged Rats-An Ontogenetic Study}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160921454}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151347}, pages = {21454 -- 21485}, year = {2015}, abstract = {In this study, we searched for proteins that change their expression in the cerebellum (Ce) of rats during ontogenesis. This study focuses on the question of whether specific proteins exist which are differentially expressed with regard to postnatal stages of development. A better characterization of the microenvironment and its development may result from these study findings. A differential two-dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of the samples revealed that the number of proteins of the functional classes differed depending on the developmental stages. Especially members of the functional classes of biosynthesis, regulatory proteins, chaperones and structural proteins show the highest differential expression within the analyzed stages of development. Therefore, members of these functional protein groups seem to be involved in the development and differentiation of the Ce within the analyzed development stages. In this study, changes in the expression of proteins in the Ce at different postnatal developmental stages (postnatal days (P) 7, 90, and 637) could be observed. At the same time, an identification of proteins which are involved in cell migration and differentiation was possible. Especially proteins involved in processes of the biosynthesis and regulation, the dynamic organization of the cytoskeleton as well as chaperones showed a high amount of differentially expressed proteins between the analyzed dates.}, language = {en} } @phdthesis{ElMesery2014, author = {El-Mesery, Mohamed}, title = {Development of CD40-targeted bifunctional scFv-TRAIL fusion proteins that induce TRAILR1- and TRAILR2-specifc cell death and dendritic cells activation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {TRAIL is a member of TNF superfamily and mediates apoptosis by binding to two DRs, TRAILR1 and TRAILR2. Despite the fact that there are other TRAILRs, TRAILR1 and TRAILR2 receive the major research interest due to their ability to trigger apoptosis and their possible use as targets in tumor therapy. Due to the potential advantages of TRAILR1- or TRAILR2-specific targeting, we investigated recently published TRAIL DR-specific mutants, one conferring specificity for TRAILR1 (TRAILmutR1) and one for TRAILR2 (TRAILmutR2). It was well proved in this work that TRAILmutR1 shows specific binding to TRAILR1 and no specific binding to TRAILR2. TRAILmutR2 vice versa shows specific binding to TRAILR2 and no significant binding to TRAILR1. Moreover, these mutants were able to induce caspase activation and cell death in a TRAILR1/2-specific manner. Moreover, the enhancement of TRAILR2-induced apoptosis by secondary oligomerization of soluble wild-type TRAIL was confirmed for the TRAILR2-specifc TRAIL mutant and similar findings were made with the TRAILR1-specific TRAIL mutant. The soluble form of TRAIL exhibits weak apoptotic activity as compared to transmembrane TRAIL. Therefore, there is the challenge in clinical research to improve the activity of soluble TRAIL. A second strategy besides the above mentioned oligomerization to improve soluble TRAIL activity is anchoring of the molecule to the cell surface, e.g. through the genetic fusion with a scFv domain recognizing a cell surface antigen. In this work, we generated fusion proteins of TRAIL, TRAILmutR1 and TRAILmutR2 with a scFv recognizing CD40 (scFv:G28). Initially, we analyzed the functionality of both the TRAIL domain and the scFv:G28 domain of the corresponding fusion proteins. TRAIL functionality was well proved through its ability to induce cell death in TRAIL sensitive cells such as Jurkat cells, provided that scFv:G28-TRAIL fusion proteins were oligomerized by anti-Flag mAb M2. Concerning the scFv:G28 domain, the fusion proteins showed enhanced binding affinity to cell lines expressing CD40 as compared to their parental CD40-negative cells. Consistent with previous studies investigating TRAIL fusion proteins with other cell surface antigen-targeting scFvs, the scFv:G28 fusion proteins with TRAIL, TRAILmutR1 and TRAILmutR2 showed enhanced induction of cell death in a CD40-dependent manner. Moreover, our results revealed that these fusion proteins have a significant paracrine apoptotic effect on CD40-negative bystander cells upon anchoring to CD40-positive cells which are TRAIL resistant. Thus, the current work provides for the first time scFv fusion proteins of TRAIL and TRAILR1- and TRAILR2-specific TRAIL mutants with CD40-restricted activity. These fusion proteins provide the advantage of attenuating the off-target effects and the potential side effects of per se highly active TRAIL variants on one hand due to the CD40-binding dependent enhancement of activity and on the other hand due to the differential use of TRAILR1 and TRAILR2. CD40 represents a tumor associated marker which is expressed on many tumor cells but also on immune cells. Therefore, the last part of this work focused on the analysis of the ability of scFv:G28-TRAIL fusion proteins to induce CD40 signaling both in tumor cells and also in immune cells. It turned out that the scFv:G28-TRAIL fusion proteins are able to induce CD40 signaling in CD40-positive tumor cells but especially also in immune cells such as iDCs leading to their maturation and further activation of immune responses. Taken together, this work provides novel bifunctional scFv-TRAIL fusion proteins which combine the induction of apoptosis via TRAIL DR with stimulation of CD40 signaling which possibly enhances antitumor immunity.}, subject = {Tumor-Nekrose-Faktor}, language = {en} } @article{BogdanSchultzGrosshans2013, author = {Bogdan, Sven and Schultz, J{\"o}rg and Grosshans, J{\"o}rg}, title = {Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics}, series = {Communicative \& Integrative Biology}, volume = {6}, journal = {Communicative \& Integrative Biology}, number = {e27634}, doi = {10.4161/cib.27634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121305}, year = {2013}, abstract = {Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.}, language = {en} }