@article{WilhelmsBroscheitShityakov2023, author = {Wilhelms, Benedikt and Broscheit, Jens and Shityakov, Sergey}, title = {Chemical analysis and molecular modelling of cyclodextrin-formulated propofol and its sodium salt to improve drug solubility, stability and pharmacokinetics (cytogenotoxicity)}, series = {Pharmaceuticals}, volume = {16}, journal = {Pharmaceuticals}, number = {5}, issn = {1424-8247}, doi = {10.3390/ph16050667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313705}, year = {2023}, abstract = {Propofol is a widely used general anesthetic in clinical practice, but its use is limited by its water-insoluble nature and associated pharmacokinetic and pharmacodynamic limitations. Therefore, researchers have been searching for alternative formulations to lipid emulsion to address the remaining side effects. In this study, novel formulations for propofol and its sodium salt Na-propofolat were designed and tested using the amphiphilic cyclodextrin (CD) derivative hydroxypropyl-β-cyclodextrin (HPβCD). The study found that spectroscopic and calorimetric measurements suggested complex formation between propofol/Na-propofolate and HPβCD, which was confirmed by the absence of an evaporation peak and different glass transition temperatures. Moreover, the formulated compounds showed no cytotoxicity and genotoxicity compared to the reference. The molecular modeling simulations based on molecular docking predicted a higher affinity for propofol/HPβCD than for Na-propofolate/HPβCD, as the former complex was more stable. This finding was further confirmed by high-performance liquid chromatography. In conclusion, the CD-based formulations of propofol and its sodium salt may be a promising option and a plausible alternative to conventional lipid emulsions.}, language = {en} } @article{ScherzadMeyerIckrathetal.2019, author = {Scherzad, Agmal and Meyer, Till and Ickrath, Pascal and Gehrke, Thomas Eckhart and Bregenzer, Maximillian and Hagen, Rudolf and Dembski, Sofia and Hackenberg, Stephan}, title = {Cultivation of hMSCs in human plasma prevents the cytotoxic and genotoxic potential of ZnO-NP in vitro}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {23}, issn = {2076-3417}, doi = {10.3390/app9234994}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193063}, year = {2019}, abstract = {Zinc oxide nanoparticles (ZnO-NPs) are commonly used for industrial applications. Consequently, there is increasing exposure of humans to them. The in vitro analysis of cytotoxicity and genotoxicity is commonly performed under standard cell culture conditions. Thus, the question arises of how the results of genotoxicity and cytotoxicity experiments would alter if human plasma was used instead of cell culture medium containing of fetal calf serum (FCS). Human mesenchymal stem cells (hMSCs) were cultured in human plasma and exposed to ZnO-NPs. A cultivation in expansion medium made of DMEM consisting 10\% FCS (DMEM-EM) served as control. Genotoxic and cytotoxic effects were evaluated with the comet and MTT assay, respectively. hMSC differentiation capacity and ZnO-NP disposition were evaluated by histology and transmission electron microscopy (TEM). The protein concentration and the amount of soluble Zn2+ were measured. The cultivation of hMSCs in plasma leads to an attenuation of genotoxic and cytotoxic effects of ZnO-NPs compared to control. The differentiation capacity of hMSCs was not altered. The TEM showed ZnO-NP persistence in cytoplasm in both groups. The concentrations of protein and Zn2+ were higher in plasma than in DMEM-EM. In conclusion, the cultivation of hMSCs in plasma compared to DMEM-EM leads to an attenuation of cytotoxicity and genotoxicity in vitro.}, language = {en} } @article{IckrathWagnerScherzadetal.2017, author = {Ickrath, Pascal and Wagner, Martin and Scherzad, Agmal and Gehrke, Thomas and Burghartz, Marc and Hagen, Rudolf and Radeloff, Katrin and Kleinsasser, Norbert and Hackenberg, Stephan}, title = {Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells}, series = {International Journal of Environmental Research and Public Health}, volume = {14}, journal = {International Journal of Environmental Research and Public Health}, number = {12}, doi = {10.3390/ijerph14121590}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169932}, pages = {1590}, year = {2017}, abstract = {Zinc oxide nanoparticles (ZnO-NP) are widely spread in consumer products. Data about the toxicological characteristics of ZnO-NP is still under controversial discussion. The human skin is the most important organ concerning ZnO-NP exposure. Intact skin was demonstrated to be a sufficient barrier against NPs; however, defect skin may allow NP contact to proliferating cells. Within these cells, stem cells are the most important toxicological target for NPs. The aim of this study was to evaluate the genotoxic and cytotoxic effects of ZnO-NP at low-dose concentrations after long-term and repetitive exposure to human mesenchymal stem cells (hMSC). Cytotoxic effects of ZnO-NP were measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Furthermore, genotoxicity was evaluated by the comet assay. For long-term observation over 6 weeks, transmission electron microscopy (TEM) was applied. The results of the study indicated cytotoxic effects of ZnO-NP beginning at high concentrations of 50 μg/mL and genotoxic effects in hMSC exposed to 1 and 10 μg/mL ZnO-NP. Repetitive exposure enhanced cyto- but not genotoxicity. Intracellular NP accumulation was observed up to 6 weeks. The results suggest cytotoxic and genotoxic potential of ZnO-NP. Even low doses of ZnO-NP may induce toxic effects as a result of repetitive exposure and long-term cellular accumulation. This data should be considered before using ZnO-NP on damaged skin.}, language = {en} } @article{ScherzadMeyerKleinsasseretal.2017, author = {Scherzad, Agmal and Meyer, Till and Kleinsasser, Norbert and Hackenberg, Stephan}, title = {Molecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity Short Running Title: Genotoxicity of ZnO NPs}, series = {Materials}, volume = {10}, journal = {Materials}, number = {12}, doi = {10.3390/ma10121427}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169948}, pages = {1427}, year = {2017}, abstract = {Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival.}, language = {en} } @phdthesis{Glaser2012, author = {Glaser, Nina}, title = {Influence of natural food compounds on DNA stability}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72872}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Cancer is one of the leading causes of death all over the world. Malnutrition and toxic contaminations of food with substances such as mycotoxins have been thought to account for a high percentage of cancers. However, human diet can deliver both mutagens and components that decrease the cancer risk. Genomic damage could be reduced by food components through different mechanisms such as scavenging of reactive oxygen species. In the first part of this study we tried to investigate the effects of patulin and resveratrol on DNA stability in V79 cells. Patulin is a mycotoxin, which is frequently found in spoiled apples and other fruits. The WHO has established a safety level of 50 µg/L, which is indeed not observed by all manufacturers. The acute toxicity of patulin in high concentrations is well known, however its potential carcinogenicity is still a matter of debate. Therefore we wanted to investigate further steps in the mechanism of patulin-induced genotoxicity. Patulin caused the formation of micronuclei and nucleoplasmic bridges in a dose-dependent manner. Further analysis revealed that patulin induced both kinetochore-negative and positive micronuclei. Time course of incubation indicate a new mechanism for patulin-induced nucleoplasmic bridge formation. We hypothized a mechanism via cross-linking of DNA, which was confirmed by a modified version of comet assay. Incubations of cells with patulin led to an increased number of multinucleated cells and multipolar mitoses. Cell cytometry revealed a G2 arrest by patulin, which might explain the amplification of centrosomes and patulin-induced aneuploidy. Patulin cause a dose-dependent DNA damage in comet assay which was influenced by the cellular GSH content. However, an induction of oxidative stress was just seen with higher concentrations of patulin. Levels of cellular glutathione were increased after 24 h incubation indicating an adaptive response to patulin-induced stress. There is growing interest in polyphenols such as resveratrol which have shown many positive effects on human health. The beneficial properties are partially attributed to their ability to scavenge reactive oxygen species. Co-incubation of V79 cells with patulin and 10 µM of the antioxidant resveratrol led to a slight reduction of micronucleus frequency compared to cells which were just treated with patulin. However, in higher concentrations resveratrol themselves caused the formation of micronuclei in V79 cells. Kinetochore analysis indicated only clastogenic properties for resveratrol but no disturbance of mitosis. The antioxidant properties of resveratrol were shown in ferric reducing antioxidant power (FRAP) assay. However, in cellular system resveratrol in higher concentrations revealed also prooxidative properties, as shown in 2,7-dichlordihydrofluorescein (DCF) assay. The increased level of glutathione after resveratrol treatment might reflect an adaptive response to resveratrol-induced oxidative stress. For the second part of this thesis we investigated the effects of an anthocyanin-rich grape extract on hypertensive Ren-2 rats. Ren-2 rats are an accepted genetically modified rat model for the investigation of hypertension and increased oxidative stress. We divided 23 female Ren-2 rats into three groups. One group was fed with an anthocyanin-rich Dacapo grape extract, one group was treated with the angiotensin converting enzyme (ACE) inhibitor ramipril and the third group was kept without medication during the experiment. After one week untreated group showed a clear increase in systolic and diastolic blood pressure compared to the ramipril treated rats. This was in part attenuated in the animals fed with anthocyanin-rich Dacapo grape extract. Effects on blood pressure were also reflected in an increased thirst of untreated and extract fed animals. Comet assay with cells of kidney and liver revealed a slight protective impact of Dacapo extract on DNA damage compared to the other groups. Similar results were obtained after evaluation of ɣ-H2AX-staining of kidney and heart sections. However, in the small intestine oppositional effects were seen, indicating an increased number of double strand breaks probably due to the high local concentration of polyphenols after oral ingestion. Antioxidative properties of the extract were shown in FRAP assay. However, this effect was not reflected in an increased antioxidative capacity in serum or a protective impact in the dihydroethidium (DHE) assay. The extract showed protective effects on DNA damage in comet assay and ɣ-H2AX-staining, but was not able to reduce hypertension back to the control level of ramipril treated animals. High local concentrations could also result in an increased damage of the affected tissue. Therefore, the administration of such concentrated compounds should be handled with care.}, subject = {Patulin}, language = {en} } @article{SchuppHeidlandStopper2010, author = {Schupp, Nicole and Heidland, August and Stopper, Helga}, title = {Genomic Damage in Endstage Renal Disease - Contribution of Uremic Toxins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68653}, year = {2010}, abstract = {Patients with end-stage renal disease (ESRD), whether on conservative, peritoneal or hemodialysis therapy, have elevated genomic damage in peripheral blood lymphocytes and an increased cancer incidence, especially of the kidney. The damage is possibly due to accumulation of uremic toxins like advanced glycation endproducts or homocysteine. However, other endogenous substances with genotoxic properties, which are increased in ESRD, could be involved, such as the blood pressure regulating hormones angiotensin II and aldosterone or the inflammatory cytokine TNF-. This review provides an overview of genomic damage observed in ESRD patients, focuses on possible underlying causes and shows modulations of the damage by modern dialysis strategies and vitamin upplementation.}, subject = {Toxin}, language = {en} } @phdthesis{Fazeli2010, author = {Fazeli, Gholamreza}, title = {Signaling in the induction of genomic damage by endogenous compounds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55634}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Reactive oxygen species (ROS) are continuously generated in cells and are involved in physiological processes including signal transduction but also their damaging effects on biological molecules have been well described. A number of reports in the literature implicate excessive oxidative stress and/or inadequate antioxidant defense in the pathogenesis of cancer, atherosclerosis, chronic and age related disorders. Several studies have indicated that activation of the renin-angiotensin-aldosterone-system can lead to the formation of ROS. Epidemiological studies have revealed higher renal cell cancer incidences and also higher cancer mortalities in hypertensive individuals. Recently, our group has shown that perfusion of the isolated mouse kidney with Ang II or treatment of several cell lines with Ang II leads to formation of DNA damage and oxidative base modifications. Here, we tried to scrutinize the pathway involved in genotoxicity of Ang II. We confirmed the genotoxicity of Ang II in two kidney cell lines of human origin. Ang II treatment led to the production of superoxide anions which we could hinder when we used the membrane permeable superoxide dismutase (SOD) mimetic TEMPOL. One of the enzymes which is activated in the cells after Ang II treatment and is able to produce ROS is NADPH oxidase. We demonstrated the activation of NADPH oxidase in response to Ang II by upregulation of its p47 subunit using RT-PCR. Also, pPhosphorylation of p47 subunit of NADPH oxidase after Ang II treatment was enhanced. Using two inhibitors we showed that NADPH oxidase inhibition completely prevents DNA damage by Ang II treatment. To differentiate between Nox2 and Nox4 isoforms of NADPH oxidase subunits in the genotoxicity of Ang II, we performed siRNA inhibition and found a role only for Nox4, while Nox2 was not involved. Next, we investigated PKC as a potential activator of NADPH oxidase. We showed that PKC becomes phosphorylated after Ang II treatment and also that inhibition of PKC hinders Ang II from damaging the cells. Our results from using several inhibitors of different parts of the pathway revealed that PKC activation in this pathway is dependent on the action of PLC on membrane phospholipids and production of IP3. IP3 binds to its receptor at endoplasmic reticulum (ER), opening a channel which allows calcium efflux into the cytoplasm. In this manner, both ER calcium stores and extracellular calcium cooperate so that Ang II can exert its genotoxic effect. PLC is activated by AT1R stimulation. We could also show that the genotoxicity of Ang II is mediated via AT1R signaling using the AT1R antagonist candesartan. In conclusion, here we have shown that Ang II is able to damage genomic damage in cell lines of kidney origin. The observed damage is associated with production of ROS. A decrease in Ang II-induced DNA damage was observed after inhibition of G-proteins, PLC, PKC and NADPH oxidase and interfering with intra- as well as extracellular calcium signaling. This leads to the following preliminary model of signaling in Ang II-induced DNA damage: binding of Ang II to the AT1 receptor activates PLC via stimulation of G-proteins, resulting in the activation of PKC in a calcium dependent manner which in turn, activates NADPH oxidase. NADPH oxidase with involvement of its Nox4 subunit then produces reactive oxygen species which cause DNA damage. Dopamine content and metabolism in the peripheral lymphocytes of PD patients are influenced by L-Dopa administration. The PD patients receiving a high dose of L-Dopa show a significantly higher content of dopamine in their lymphocytes compared to PD patients who received a low dose of L-Dopa or the healthy control. Central to many of the processes involved in oxidative stress and oxidative damage in PD are the actions of monoamine oxidase (MAO), the enzyme which is responsible for the enzymatic oxidation of dopamine which leadsing to production of H2O2 as a by-product. We investigated whether dopamine oxidation can cause genotoxicity in lymphocytes of PD patents who were under high dose L-Dopa therapy and afterward questioned the occurrence of DNA damage after dopamine treatment in vitro and tried to reveal the mechanism by which dopamine exerts its genotoxic effect. The frequency of micronuclei in peripheral blood lymphocytes of the PD patients was not elevated compared to healthy age-matched individuals, although the formation of micronuclei revealed a positive correlation with the daily dose of L-Dopa administration in patients who received L-Dopa therapy together with dopamine receptor agonists. In vitro, we describe an induction of genomic damage detected as micronucleus formation by low micromolar concentrations in cell lines with of different tissue origins. The genotoxic effect of dopamine was reduced by addition of the antioxidants TEMPOL and dimethylthiourea which proved the involvement of ROS production in dopamine-induced DNA damage. To determine whether oxidation of dopamine by MAO is relevant in its genotoxicity, we inhibited MAO with two inhibitors, trans-2-phenylcyclopropylamine hydrochloride (PCPA) and Ro 16-6491 which both reduced the formation of micronuclei in PC-12 cells. We also studied the role of the dopamine transporter (DAT) and dopamine type 2 receptor (D2R) signaling in the genotoxicity of dopamine. Inhibitors of the DAT, GBR-12909 and nomifensine, hindered dopamine-induced genotoxicity. These results were confirmed by treatment of MDCK and MDCK-DAT cells, the latter containing the human DAT gene, with dopamine. Only MDCK-DAT cells showed elevated chromosomal damage and dopamine uptake. Although stimulation of D2R with quinpirole in the absence of dopamine did not induce genotoxicity in PC-12 cells, interference with D2R signaling using D2R antagonist and inhibition of G-proteins, phosphoinositide 3 kinase and extracellular signal-regulated kinases reduced dopamine-induced genotoxicity and affected the ability of DAT to take up dopamine. Furthermore, the D2R antagonist sulpiride inhibited the dopamine-induced migration of DAT from cytosol to cell membrane. Overall, the neurotransmitter dopamine causes DNA damage and oxidative stress in vitro. There are also indications that high dose L-Dopa therapy might lead to oxidative stress. Dopamine exerts its genotoxicity in vitro upon transport into the cells and oxidization oxidation by MAO. Transport of dopamine by DAT has the central role in this process. D2R signaling is involved in the genotoxicity of dopamine by affecting activation and cell surface expression of DAT and hence modulating dopamine uptake. We provided evidences for receptor-mediated genotoxicity of two compounds with different mechanism of actions. The involvement of these receptors in many human complications urges more investigations to reveal whether abnormalities in the endogenous compounds-mediated signaling can play a role in the initiation of new conditions like carcinogenesis.}, subject = {Angiotensin II}, language = {en} }