@phdthesis{Haider2022, author = {Haider, Malik Salman}, title = {Structure Property Relationship and Therapeutic Potential of Poly(2-oxazoline)s and Poly(2-oxazines)s based Amphiphiles}, doi = {10.25972/OPUS-28903}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289036}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the past decade, poly(2-oxazoline)s (POx) and very recently poly(2-oxazine)s (POzi) based amphiphiles have shown great potential for medical applications. Therefore, the major aim of this thesis was to further explore the pharmaceutical and biomedical applications of POx/POzi based ABA triblock and AB diblock copolymers, respectively with the special emphasis on structure property relationship (SPR). ABA triblock copolymers (with shorter side chain length in the hydrophobic block) have shown high solubilizing capacity for hydrophobic drugs. The issue of poor aqueous solubility was initially addressed by developing a (micellar) formulation library of 21 highly diverse, hydrophobic drugs with POx/POzi based ABA triblock copolymers. Theoretically, the extent of compatibility between polymers and drug was determined by calculating solubility parameters (SPs). The SPs were thoroughly investigated to check their applicability in present systems. The selected formulations were further characterized by various physico-chemical techniques. For the biomedical applications, a novel thermoresposive diblock copolymer was synthesized which has shown promising properties to be used as hydrogel bioink or can potentially be used as fugitive support material. The most important aspect i.e. SPR, was studied with respect to hydrophilic block in either tri- or di-block copolymers. In triblock copolymer, the hydrophilic block played an important role for ultra high drug loading, while in case of diblock, it has improved the printability of the hydrogels. Apart from the basic research, the therapeutic applications of two formulations i.e. mitotane (commercially available as tablet dosage form for adrenocortical carcinoma) and BT-44 (lead compound for nerve regeneration) were studied in more detail.}, language = {en} } @article{ZahoranovaLuxenhofer2021, author = {Zahoranov{\´a}, Anna and Luxenhofer, Robert}, title = {Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations—An Update}, series = {Advanced Healthcare Materials}, volume = {10}, journal = {Advanced Healthcare Materials}, number = {6}, doi = {10.1002/adhm.202001382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225833}, year = {2021}, abstract = {For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.}, language = {en} } @article{PoepplerLuebtowSchlauersbachetal.2019, author = {P{\"o}ppler, Ann-Christin and L{\"u}btow, Michael M. and Schlauersbach, Jonas and Wiest, Johannes and Meinel, Lorenz and Luxenhofer, Robert}, title = {Loading dependent Structural Model of Polymeric Micelles Encapsulating Curcumin by Solid-State NMR Spectroscopy}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {51}, doi = {10.1002/anie.201908914}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206705}, pages = {18540-18546}, year = {2019}, abstract = {Detailed insight into the internal structure of drug-loaded polymeric micelles is scarce, but important for developing optimized delivery systems. We observed that an increase in the curcumin loading of triblock copolymers based on poly(2-oxazolines) and poly(2-oxazines) results in poorer dissolution properties. Using solid-state NMR spectroscopy and complementary tools we propose a loading-dependent structural model on the molecular level that provides an explanation for these pronounced differences. Changes in the chemical shifts and cross-peaks in 2D NMR experiments give evidence for the involvement of the hydrophobic polymer block in the curcumin coordination at low loadings, while at higher loadings an increase in the interaction with the hydrophilic polymer blocks is observed. The involvement of the hydrophilic compartment may be critical for ultrahigh-loaded polymer micelles and can help to rationalize specific polymer modifications to improve the performance of similar drug delivery systems.}, language = {en} }