@article{StoerkBernhardtBoehmetal.2022, author = {St{\"o}rk, Stefan and Bernhardt, Alexandra and B{\"o}hm, Michael and Brachmann, Johannes and Dagres, Nikolaos and Frantz, Stefan and Hindricks, Gerd and K{\"o}hler, Friedrich and Zeymer, Uwe and Rosenkranz, Stephan and Angermann, Christiane and Aßmus, Birgit}, title = {Pulmonary artery sensor system pressure monitoring to improve heart failure outcomes (PASSPORT-HF): rationale and design of the PASSPORT-HF multicenter randomized clinical trial}, series = {Clinical Research in Cardiology}, volume = {111}, journal = {Clinical Research in Cardiology}, number = {11}, doi = {10.1007/s00392-022-01987-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324026}, pages = {1245-1255}, year = {2022}, abstract = {Background Remote monitoring of patients with New York Heart Association (NYHA) functional class III heart failure (HF) using daily transmission of pulmonary artery (PA) pressure values has shown a reduction in HF-related hospitalizations and improved quality of life in patients. Objectives PASSPORT-HF is a prospective, randomized, open, multicenter trial evaluating the effects of a hemodynamic-guided, HF nurse-led care approach using the CardioMEMS™ HF-System on clinical end points. Methods and results The PASSPORT-HF trial has been commissioned by the German Federal Joint Committee (G-BA) to ascertain the efficacy of PA pressure-guided remote care in the German health-care system. PASSPORT-HF includes adult HF patients in NYHA functional class III, who experienced an HF-related hospitalization within the last 12 months. Patients with reduced ejection fraction must be on stable guideline-directed pharmacotherapy. Patients will be randomized centrally 1:1 to implantation of a CardioMEMS™ sensor or control. All patients will receive post-discharge support facilitated by trained HF nurses providing structured telephone-based care. The trial will enroll 554 patients at about 50 study sites. The primary end point is a composite of the number of unplanned HF-related rehospitalizations or all-cause death after 12 months of follow-up, and all events will be adjudicated centrally. Secondary end points include device/system-related complications, components of the primary end point, days alive and out of hospital, disease-specific and generic health-related quality of life including their sub-scales, and laboratory parameters of organ damage and disease progression. Conclusions PASSPORT-HF will define the efficacy of implementing hemodynamic monitoring as a novel disease management tool in routine outpatient care. Trial registration ClinicalTrials.gov; NCT04398654, 13-MAY-2020.}, language = {en} } @article{HeldHesseGoettetal.2014, author = {Held, Matthias and Hesse, Alexander and G{\"o}tt, Franziska and Holl, Regina and H{\"u}bner, Gudrun and Kolb, Philipp and Langen, Heinz Jakob and Romen, Tobias and Walter, Franziska and Sch{\"a}fers, Hans Joachim and Wilkens, Heinrike and Jany, Berthold}, title = {A symptom-related monitoring program following pulmonary embolism for the early detection of CTEPH: a prospective observational registry study}, series = {BMC Pulmonary Medicine}, volume = {14}, journal = {BMC Pulmonary Medicine}, doi = {10.1186/1471-2466-14-141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119281}, pages = {141}, year = {2014}, abstract = {Background Chronic thromboembolic pulmonary hypertension (CTEPH) is a long-term complication following an acute pulmonary embolism (PE). It is frequently diagnosed at advanced stages which is concerning as delayed treatment has important implications for favourable clinical outcome. Performing a follow-up examination of patients diagnosed with acute PE regardless of persisting symptoms and using all available technical procedures would be both cost-intensive and possibly ineffective. Focusing diagnostic procedures therefore on only symptomatic patients may be a practical approach for detecting relevant CTEPH. This study aimed to evaluate if a follow-up program for patients with acute PE based on telephone monitoring of symptoms and further examination of only symptomatic patients could detect CTEPH. In addition, we investigated the role of cardiopulmonary exercise testing (CPET) as a diagnostic tool. Methods In a prospective cohort study all consecutive patients with newly diagnosed PE (n=170, 76 males, 94 females within 26 months) were recruited according to the inclusion and exclusion criteria. Patients were contacted via telephone and asked to answer standardized questions relating to symptoms. At the time of the final analysis 130 patients had been contacted. Symptomatic patients underwent a structured evaluation with echocardiography, CPET and complete work-up for CTEPH. Results 37.7\%, 25.5\% and 29.3\% of the patients reported symptoms after three, six, and twelve months respectively. Subsequent clinical evaluation of these symptomatic patients saw 20.4\%, 11.5\% and 18.8\% of patients at the respective three, six and twelve months time points having an echocardiography suggesting pulmonary hypertension (PH). CTEPH with pathological imaging and a mean pulmonary artery pressure (mPAP) ≥ 25 mm Hg at rest was confirmed in eight subjects. Three subjects with mismatch perfusion defects showed an exercise induced increase of PAP without increasing pulmonary artery occlusion pressure (PAOP). Two subjects with pulmonary hypertension at rest and one with an exercise induced increase of mPAP with normal PAOP showed perfusion defects without echocardiographic signs of PH but a suspicious CPET. Conclusion A follow-up program based on telephone monitoring of symptoms and further structured evaluation of symptomatic subjects can detect patients with CTEPH. CPET may serve as a complementary diagnostic tool.}, language = {en} }