@phdthesis{Hell2019, author = {Hell, Dennis}, title = {Development of self-adjusting cytokine neutralizer cells as a closed-loop delivery system of anti-inflammatory biologicals}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175381}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The current treatment strategies for diseases are assessed on the basis of diagnosed phenotypic changes due to an accumulation of asymptomatic events in physiological processes. Since a diagnosis can only be established at advanced stages of the disease, mainly due to insufficient early detection possibilities of physiological disorders, doctors are forced to treat diseases rather than prevent them. Therefore, it is desirable to link future therapeutic interventions to the early detection of physiological changes. So-called sensor-effector systems are designed to recognise disease-specific biomarkers and coordinate the production and delivery of therapeutic factors in an autonomous and automated manner. Such approaches and their development are being researched and promoted by the discipline of synthetic biology, among others. Against this background, this paper focuses on the in vitro design of cytokine-neutralizing sensor-effector cells designed for the potential treatment of recurrent autoimmune diseases, especially rheumatoid arthritis. The precise control of inducible gene expression was successfully generated in human cells. At first, a NF-κB-dependent promoter was developed, based on HIV-1 derived DNA-binding motives. The activation of this triggerable promoter was investigated using several inducers including the physiologically important NF-κB inducers tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1β). The activation strength of the NF-κB-triggered promoter was doubled by integrating a non-coding RNA. The latter combined expressed RNA structures, which mimic DNA by double stranded RNAs and have been demonstrated to bind to p50 or p65 by previous publications. The sensitivity was investigated for TNFα and IL-1β. The detection limit and the EC50 values were in in the lower picomolar range. Besides the sensitivity, the reversibility and dynamic of the inducible system were characterized. Hereby a close correlation between pulse times and expression profile was shown. The optimized NF-κB-dependent promoter was then coupled to established TNFα- and IL-1-blocking biologicals to develop sensor-effector systems with anti-inflammatory activity, and thus potential use against autoimmune diseases such as rheumatoid arthritis. The biologicals were differentiated between ligand-blocking and receptor-blocking biologicals and different variants were selected: Adalimumab, etanercept and anakinra. The non-coding RNA improved again the activation strength of NF-κB-dependent expressed biologicals, indicating its universal benefit. Furthermore, it was shown that the TNFα-induced expression of NF-κB-regulated TNFα-blocking biologics led to an extracellular negative feedback loop. Interestingly, the integration of the non-coding RNA and this negative feedback loop has increased the dynamics and reversibility of the NF-κB-regulated gene expression. The controllability of drug release can also be extended by the use of inhibitors of classical NF-κB signalling such as TPCA-1. The efficacy of the expressed biologicals was detected through neutralization of the cytokines using different experiments. For future in vivo trials, first alginate encapsulations of the cells were performed. Furthermore, the activation of NF-κB-dependent promoter was demonstrated using co-cultures with human plasma samples or using synovial liquids. With this generated sensor-effector system we have developed self-adjusting cytokine neutralizer cells as a closed-loop delivery system for anit-inflammatory biologics.}, subject = {Biologika}, language = {en} } @phdthesis{Werner2014, author = {Werner, Christian}, title = {Effect of autoantibodies targeting amphiphysin or glutamate decarboxylase 65 on synaptic transmission of GABAergic neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105648}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The number of newly detected autoantibodies (AB) targeting synaptic proteins in neurological disorders of the central nervous system (CNS) is steadily increasing. Direct interactions of AB with their target antigens have been shown in first studies but the exact pathomecha-nisms for most of the already discovered AB are still unclear. The present study investigates pathophysiological mechanisms of AB-fractions that are associated with the enigmatic CNS disease Stiff person syndrome (SPS) and target the synaptically located proteins amphiphysin or glutamate decarboxylase 65 (GAD65). In the first part of the project, effects of AB to the presynaptic endocytic protein amphiphysin were investigated. Ultrastructural investigations of spinal cord presynaptic boutons in an es-tablished in-vivo passive-transfer model after intrathecal application of human anti-amphiphysin AB showed a defect of endocytosis. This defect was apparent at high synaptic activity and was characterized by reduction of the synaptic vesicle pool, clathrin coated vesi-cles (CCVs), and endosome like structures (ELS) in comparison to controls. Molecular inves-tigation of presynaptic boutons in cultured murine hippocampal neurons with dSTORM microscopy after pretreatment with AB to amphiphysin revealed that marker proteins involved in vesicle exocytosis (synaptobrevin 2 and synaptobrevin 7) had an altered expression in GA-BAergic presynapses. Endophilin, a direct binding partner of amphiphysin also displayed a disturbed expression pattern. Together, these results point towards an anti-amphiphysin AB-induced defective organization in GABAergic synapses and a presumably compensatory rearrangement of proteins responsible for CME. In the second part, functional consequences of SPS patient derived IgG fractions containing AB to GAD65, the rate limiting enzyme for GABA synthesis, were investigated by patch clamp electrophysiology and immunohistology. GABAergic neurotransmission at low and high activity as well as short term plasticity appeared normal but miniature synaptic potentials showed an enhanced frequency with constant amplitudes. SPS patient IgG after preabsorption of GAD65-AB using recombinant GAD65 still showed specific synaptic binding to neu-rons and brain slices supporting the hypothesis that additional, not yet characterized AB are present in patient IgG responsible for the exclusive effect on frequency of miniature potentials. In conclusion, the present thesis uncovered basal pathophysiological mechanisms underlying paraneoplastic SPS induced by AB to amphiphysin leading to disturbed presynaptic architec-ture. In idiopathic SPS, the hypothesis of a direct pathophysiological role of AB to GAD65 was not supported and additional IgG AB are suspected to induce distinct synaptic malfunction.}, subject = {Autoaggressionskrankheit}, language = {en} } @phdthesis{Sandwick2012, author = {Sandwick, Sarah}, title = {Suppression of Experimental Autoimmune-Encephalomyelitis by Myeloid-Derived Suppressor Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72690}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Autoimmune diseases, unwanted overshooting immune responses against self antigens, are due to an imbalance in immunity and tolerance. Although negatively impacting cancer prognosis, myeloid derived suppressor cells (MDSC), with their potent suppressive capabilities, might be applicable in a more beneficial light when applied in to autoimmunity. As previous shown MDSC have protective roles in Experimental Autoimmune Encephalomyelitis (EAE) (Zhu et al., 2007), the established inducible mouse model for the autoimmune disease multiple sclerosis (MS). This decrease in disease severity indicates in vitro generated immature myeloid cells (IMC) from bone marrow (BM) as precursors of MDSC are promising candidates for cellular therapy. Important to any cellular therapy by adoptive transfer, the major questions regarding IMC efficacy was addressed within the thesis. This thesis attempts to elucidate how IMC operate in EAE. This thesis defines the factors within the autoimmune microenvironment that lead to the activation of MDSC, where IMC home once delivered in vivo, and the protective mechanisms BMIMC employ. To emulate BM cells when they first enter circulation through the blood, IMC were injected intravenously (i.v.). IMC are protective with no regard to the various routes delivered (i.v., i.p.). They protect to a lesser extent when pre-activated before injection. IMC suppress by causing a delay and/or by decreasing the severity of the disease via a mechanism yet determined. To understand the migration pattern of IMC after i.v. injection, in vivo kinetics experiments employing bioluminescence imaging were performed. This techinique allows for whole in vivo mouse imaging daily, allowing the tracking of cell migration over days within a single mouse. During steady-state, BMIMC circulate and appear to accumulate in the spleen by day 4 after injection, whereas they alternatively home to inflammatory sites (immunization site), draining lymph nodes, and the spleen within mice with low grade EAE. Visualization of CMDiI-labelled BMIMC by fluorescence microscopy could locate IMC injected cells outside the white pulp, as they were colocalizing in the regions stained with CD169 or outside, but not within the follicles of spleens on day 4. Consistant with these findings, the attempt to analyze the phenotype of these cells by flow cytometry was problematic as these cells seem to adhere strongly to collagen also indicating the cells are located in the collagenous area of the marginal zone and the red pulp.To determine factors influencing MDSC activation, we utilized different stimuli through a high throughput method detecting release of nitric oxide (NO). Extracts from yeast, fungi, and bacteria were observed to activate MDSC to produce nitric oxide. Surprisingly, material mimicking viral DNA (CpG) and RNA (poly I:C), and several self glycolipids, could not activate the MDSC to produce NO. Upon attempts to understand synergistic effects between microbial pathogens and host cytokines, IFNg was determined to boost the signal of pathogen stimuli, whereas IL17, another cytokine which causes pathology during EAE, and IFNb, a drug used in therapy to treat MS, did not cause any additional effects. Activation of MDSC was determined by the microbial pathogens components LPS, curdlan, and zymosan, to induce upregulation of B7H1 on the cell surface. MDSC did not increase any co-stimulatory markers, such as CD40, CD80, CD86, CD70, or the co-inhibitory marker, PDL2. On day 1 after EAE induction, endogenous MDSC populations when stimulated showed an increase in B7H1 expression and a downregulation of CD80. After further analysis, these cells were concluded to be mostly granulocytic cells (Ly6G+). As the B7H1 ligand PD1 is upregulated in chronic diseases and correlates to an exhausted phenotype, the PD1 : B7H1 interaction was a good candidate for the mechanism our cells may employ for their suppressive capacity. To investigate this interaction, fixed BM-IMC deficient in B7H1 were incubated with restimulated memory T cells. IMC deficient in B7H1 resulted in a significant loss of T cell suppression, as compared to the wildtype control BMIMC. To assess this interaction in vivo, we injected wildtype (WT) and B7H1-/- IMC into mice followed by induction of EAE to assess whether B7H1 mediated this suppression. The lack of B7H1 did not alter their suppressive capacity under these conditions, contrary to other findings which have described this interaction to be important in their suppressive capacity when administered post EAE induction (Ioannou et al., 2012). Interestingly, EAE mice pre-treated with IMC had similar amounts of cytokine production in the CNS after restimulation. Spleens from IMC injected mice had increased amounts of Arg-1 suggesting suppression is via oxidation or recruitment by soluble mediators may lead to this protection. We speculate this may inhibit T cell reactivation in the CNS.}, subject = {Encephalomyelitis}, language = {en} }