@phdthesis{Krenz2023, author = {Krenz, Bastian}, title = {The immune-evasive potential of MYC in pancreatic ductal adenocarcinoma}, doi = {10.25972/OPUS-32590}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325903}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Pancreatic ductal adenocarcinoma (PDAC) is predominantly driven by mutations in KRAS and TP53. However, PDAC tumors display deregulated levels of MYC and are a paradigm example for MYC-driven and -addicted tumors. For many years MYC was described as a transcription factor that regulates a pleiotropic number of genes to drive proliferation. Recent work sheds a different light on MYC biology. First, changes in gene expression that come along with the activation of MYC are mild and MYC seems to act more as a factor that reduces stress and increases resilience towards challenges during transcription. Second, MYC is a strong driver of immune evasion in different entities. In this study we depleted MYC in murine PDAC cells and revealed the immune dependent regression of tumors in an orthotope transplant model, as well as the activation of the innate immune system using global expression analysis, immunoblotting and fCLIP. These experiments revealed that endogenous double-stranded RNA is binding as a viral mimicry to Toll-like receptor 3, causing activation of TBK1 and downstream activation of a proimmunogenic transcription program. The regression of tumors upon depletion of MYC is dependent on this pathway since the knockout of TBK1 prevents regression of tumors after depletion of MYC. We can summarize this study in three main findings: First, the dominant and most important function of MYC in tumors is not to drive proliferation but to promote immune evasion and prevent immune-dependent regression of tumors. Second, cells monitor defects or delay in splicing and RNA processing and activate the immune system to clear cells that face problems with co-transcriptional processing. Third, MYC suppresses the activation of the cell-intrinsic innate immune system and shields highly proliferating cells from the recognition by the immune system. To translate this into a therapeutically approach, we replaced the shRNA mediated depletion of MYC by treatment with cardiac glycosides. Upon treatment with cardiac glycosides tumor cells reduce uptake of nutrients, causing a downregulation of MYC translation, inhibition of proliferation, glycolysis and lactate secretion. Lactate is a major reason for immune evasion in solid tumors since it dampens, amongst others, cytotoxic T cells and promotes regulatory T cells. Treatment of mice with cardiac glycosides causes a complete and immune-dependent remission of PDAC tumors in vivo, pointing out that cardiac glycosides have strong proimmunogenic, anti-cancer effects. More detailed analyses will be needed to dissect the full mechanism how cardiac glycosides act on MYC translation and immune evasion in PDAC tumors.}, subject = {Bauchspeicheldr{\"u}senkrebs}, language = {en} } @phdthesis{Jung2016, author = {Jung, Lisa Anna}, title = {Targeting MYC Function as a Strategy for Tumor Therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC's mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy.}, subject = {Myc}, language = {en} }