@phdthesis{Bachmann2021, author = {Bachmann, Julia}, title = {Role of Adipose-Derived Stromal/Stem Cells in Cell-Assisted Lipotransfer - Characterization of their Secretory Capacity under Ischemia-Like Stress Conditions and Establishment of a 3D Adipose Tissue-ASC Co-Culture}, doi = {10.25972/OPUS-25178}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251786}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The use of human adipose-derived mesenchymal stem cells (ASCs) for cell-based therapeutic approaches, in terms of repair and regeneration of various tissues and organs, offers an alternative therapeutic tool in the field of regenerative medicine. The ability of ASCs to differentiate along mesenchymal lineages is not the only property that makes these cells particularly attractive for therapeutic purposes. Their promising functions in promoting angiogenesis, reducing inflammation as well as in functional tissue restoration are largely related to the trophic effects of a broad panel of secreted cytokines and growth factors. However, in cell-based approaches, the cell-loaded construct often is exposed to an ischemic microenvironment characterized by severe oxidative and nutritional stress after transplantation due to the initial lack of vascular connection, resulting in reduced cell viability and altered cell behaviour. Therefore, the effective use of ASCs in regenerative medicine first requires a comprehensive characterization of the cells in terms of their viability, differentiation capacity and especially their secretory capabilities under ischemia-mimicking conditions in order to better understand their beneficial role. Accordingly, in the first part of this work, ASCs were investigated under different ischemic conditions, in which cells were exposed to both glucose and oxygen deprivation, with respect to viability and secretory function. Using mRNA gene expression analysis, significantly higher expression of selected angiogenic, anti-apoptotic and immunomodulatory factors (IL-6, VEGF, STC-1) could be demonstrated under harsh ischemic conditions. These results were reflected at the protein expression level by a significantly increased secretion of these factors. For stanniocalcin-1 (STC-1), a factor not yet described in ASCs, a particularly high expression with significant secreted amounts of the protein could be demonstrated under harsh ischemic conditions. Thus, the first part of this work, in addition to the characterization of the viability, provided first insights into the secretory response of ASCs under ischemic conditions. The response of ASCs to glucose deficiency in combination with severe hypoxia has been little explored to date. Thus, the focus of the second part of this work was on a more detailed investigation of the secretory response of ASCs under glucose and oxygen deprivation. For a more comprehensive analysis of the secretion profile, a cytokine antibody array was performed, which allowed the detection of a broad panel of secreted angiogenic factors (IL-8, ANG), matrix-regulating proteins (TIMP-1, TIMP-2), chemokines (MCP-1/CCL2, IP-10/CXCL 10) and other factors under ischemic conditions. To verify these results, selected factors were examined using ELISA. The analysis revealed that the secretion of individual factors (e.g., STC-1, VEGF) was significantly upregulated by the combination of glucose and oxygen deprivation compared to oxygen deprivation alone. In order to investigate the impact of the secretome of ischemic ASCs on cell types involved in tissue regeneration, the effect of conditioned medium of ischemia-challenged ASCs on both endothelial cells and fibroblasts was investigated in subsequent experiments. Significantly increased viability and tube formation of endothelial cells as well as activated migration of fibroblasts by the secreted factors of ischemic ASCs could be demonstrated. A direct correlation of these effects to STC-1, which was significantly upregulated under ischemic conditions and has been described as a regulator of key cellular functions, could not be verified. The particular secretory capacity of ASCs provides a valuable tool for cell-based therapies, such as cell-assisted lipotransfer (CAL), where by enriching fat grafts with isolated ASCs, a significantly improved survival rate of the transplanted construct is achieved with less resorption of the fat tissue as well as a reduction in adverse implications, such as fibrosis and cyst formation. In order to better understand the function of ASCs in CAL, an autologous transwell-based lipograft-ASC co-culture was established in the last part of this work, in which first investigations showed a markedly increased secretion of VEGF compared to lipografts without added ASCs. As the stability rate of the fat tissue and thus the success of CAL is presumably also dependent on the preparation of the tissue before transplantation, the conventional preparation method of fat tissue for vocal fold augmentation in laryngoplasty was additionally evaluated in vitro in a pilot experiment. By analyzing the viability and tissue structure of the clinically prepared injection material, a large number of dead cells and a clearly damaged tissue structure with necrotic areas could be demonstrated. In comparison, the preparation method of the fat tissue established in this work as small tissue fragments was able to provide a clearly intact, vital, and vascularized tissue structure. This type of adipose tissue preparation represents a promising alternative for clinical vocal fold augmentation. In conclusion, the results of this work contribute to a comprehensive characterization of ASCs under ischemic conditions, such as those prevalent at the transplantation site or in tissue regeneration. The results obtained, especially on the secretory capacity of ASCs, provide new insights into how ASCs mediate regenerative effects in an ischemic milieu and why their use for therapeutic purposes is highly attractive and promising.}, subject = {Adipose}, language = {en} } @phdthesis{Pillai2011, author = {Pillai, Deepu}, title = {Differential effects of Pigment epithelium derived factor and epidermal growth factor on Ischemia-reperfusion injury in rats - a magnetic resonance imaging study at 3 tesla}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57341}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Stroke, after myocardial infarction and cancer is the third most common cause of death worldwide and 1/6th of all human beings will suffer at least one stroke in their lives. Furthermore, it is the leading cause for adult disability with approximately one third of patients who survive for the next 6 months are dependent on others. Because of its huge socioeconomic burden absorbing 6\% of all health care budgets and with the fact that life expectancy increases globally, one can assume that stroke is already, and will continue to be, the most challenging disease. Ischemic stroke accounts for approximately 80\% of all strokes and results from a thrombotic or embolic occlusion of a major cerebral artery (most often the middle cerebral artery, MCA) or its branches Following acute ischemic stroke, the most worrisome outcome is the rapidly increasing intra-cranial pressure due to the formation of space-occupying vasogenic oedema which can have lethal consequences. Permeability changes at the Blood-Brain Barrier (BBB) usually accompanies the oedematous development and their time course can provide invaluable insight into the nature of the insult, activation of compensatory mechanisms followed by long term repair. Rodent models of focal cerebral ischemia have been developed and optimized to mimic human stroke conditions and serve as indispensable tools in the field of stroke research. The presented work constituting of three separate but complete works by themselves are sequential, where, the first part was dedicated to the establishment of non-invasive small animal imaging strategies on a 3 tesla clinical magnetic resonance scanner. This facilitated the longitudinal monitoring of pathological outcomes following stroke where identical animals can serve as its own control. Tissue relaxometric estimations were carried out initially to derive the transverse (T2), longitudinal (T1) and the transverse relaxation time due to magnetic susceptibility effects (T2*) at the cortical and striatal regions of the rodent brain. Statistically significant differences in T2*-values could be found between the cortex and striatal regions of the rodent brain. The derived tissue relaxation values were considered to modify the existing imaging protocols to facilitate the study of the rodent model of ischemic stroke. The modified sequence protocols adequately characterized all the clinically relevant sequels following acute ischemic stroke, like, the altered perfusion and diffusion characteristics. Subsequent to this, serial magnetic resonance imaging was performed to investigate the temporal and spatial relationship between the biphasic nature of BBB opening and, in parallel, the oedema formation after I/R injury in rats. T2-relaxometry for oedema assessment was performed at 1 h after ischemia, immediately following reperfusion, and at 4, 24 and 48 hours post reperfusion. Post-contrast T1-weighted imaging was performed at the last three time points to assess BBB integrity. The biphasic course of BBB opening with significant reduction in BBB permeability at 24 hours after reperfusion was associated with a progressive expansion of leaky BBB volume, accompanied by a peak ipsilateral oedema formation. At 48 hours, the reduction in T2-value indicated oedema resorption accompanied by a second phase of BBB opening. In addition, at 4 hours after reperfusion, oedema formation could also be detected at the contralateral striatum which persisted to varying degrees throughout the study, indicative of widespread effects of I/R injury. The observations of this study may indicate a dynamic temporal shift in the mechanisms responsible for biphasic BBB permeability changes, with non-linear relations to oedema formation. Two growth factor peptides namely pigment epithelium derived factor (PEDF) and epidermal growth factor (EGF) with widely different trophic properties were considered for their beneficial effects, if any, in the established rodent model of I/R injury and studied up to one week employing magnetic resonance imaging. Both the selected, trophic factors demonstrated significant neuroprotection as demonstrated by a reduction in infarct volume, even though PEDF was found to be the most potent one. PEDF also demonstrated significant attenuation of oedema formation in comparison to both the control and EGF groups, even though EGF could also demonstrate oedema suppression. In the present work, we noticed that interventions with macromolecule protein/peptides by itself could mediate remote oedema at distant sites even though the significance of such an observation is not clear at present. Susceptibility (T2*) weighted tissue relaxometric estimations were considered at the infarct region to detect any metabolic changes arising out of any neuroprotection and/or cellular proliferation / neurogenesis. PEDF group demonstrated a striking reduction of the T2*-values, which is indicative of an increased metabolic activity. Moreover, all the groups (Control, EGF and PEDF) demonstrated significantly elevated T2*-values at the contralateral striatum, which is indicative of widespread metabolic suppression usually associated with a variety of traumatic brain conditions. Moreover, as expected from the properties of PEDF, it demonstrated an extended BBB permeability suppression throughout the duration of the study. This study underlines the merits of considering non-invasive imaging strategies without which it was not possible to study the required parameters in a longitudinal fashion. All the observations are adequately supported by reasonably well defined mechanisms and needs to be further verified and confirmed by an immunohistochemical study. These results also need to be complemented by a functional study to evaluate the behavioural outcome of animals following these treatments. These studies are progressing at our laboratory and the results will be duly published afterwards.}, subject = {Schlaganfall}, language = {en} } @article{EhlingBittnerBobaketal.2010, author = {Ehling, P. and Bittner, S. and Bobak, N. and Schwarz, T. and Wiendl, H. and Budde, T. and Kleinschnitz, Christoph and Meuth, S. G.}, title = {Two pore domain potassium channels in cerebral ischemia: a focus on K2p9.1 (TASK3, KCNK9)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68129}, year = {2010}, abstract = {BACKGROUND: Recently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1. METHODS: We combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation. RESULTS: Patch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 +/- 9.80\% and 69.92 +/- 11.65\%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 +/- 17.31 mm3 and 47.10 +/- 19.26 mm3, respectively). CONCLUSIONS: Together with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia.}, subject = {Kaliumkanal}, language = {en} }